Handhebelpressen Druckluftpressen Hydropneumatikpressen

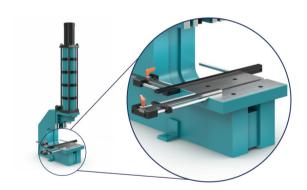
		eine Vielzahl von Arbeitsgängen kann schnell, präzise und leicht
Pressen-Arbeitsplätze	4	erledigt werden, wie zum Beispiel:
Pressenköpfe / Pressen-Ständer	5	
Handhebelpressen	6	A
▶ Laborpressen	7	Montieren
Extras für Handhebelpressen	8-9	
▶ Kniehebelpressen mit Rundstößel	10-13	
▶ Kniehebelpressen mit Vierkantstößel	14-17	1
Zahnstangenpressen mit Rundstößel	18-19	Einpressen
▶ Zahnstangenpressen mit Vierkantstößel	20-21	
▶ MicroPress [®] Zahnstangenpresse	22-23	
▶ Federschlagpresse	24	
Richtwerkzeug für Handhebelpressen	25	Biegen
Prozessüberwachung für Handhebelpressen	26-29	
Druckluftpressen		
▶ Kniehebel-Druckluftpressen	30-31	
▶ XL-Kniehebel-Druckluftpressen	32-33	Nieten
▶ Handunterstützte Kniehebel-Druckluftpressen	34-35	
Direktwirkende Druckluftpressen	36-49	
DAP Portalpressen	50-51	
DAF Direktwirkende Pressenzylinder	52-53	Abkanten
▶ MicroPress® mit Vierkantstößel	54-55	
▶ hydro-pneumatische Pressen	56-59	
▶ Schiebetische	60-61	
▶ 2 Hand-Sicherheitssteuerung für pneumatische Pressen	63	Stanzen
Prozessüberwachung für Druckluftpressen	64-67	•
Press & Tool Concept	68	
▶ Pressen / Werkzeuge Übersicht	69	Ciman
▶ KP Hand-Kniehebelpressen	70-71	Crimpen
▶ KP Druckluftpressen	72-73	
▶ Werkzeugsysteme	74-75	Gerne ermitteln wir anhand Ihrer Teile die benötigte Presskraft.

Pressen, die Anwendungen

Farben / Arbeitsplätze / Sondermodelle

Farben

- Standard Farbe RAL 5021 oder auf Wunsch ohne Mehrkosten RAL 7035
- ► Sonderfarben aus dem RAL Segment gegen Mehrpreis



RAL 7035

Wunschfarbe aus der RAL Palette

Arbeitsplätze

Neben den Pressen bieten wir auch die Konstruktion und den Bau von kompletten Arbeitsplätzen an. Unsere Pressen werden somit den heutigen Forderungen nach einem flexiblen Arbeitsmittel gerecht, das schnell der immer größer werdenden Modellvielfalt in kleineren Losgrößen und kürzeren Produktionszyklen angepasst werden kann. Flexible manuelle Arbeitsplätze, die nach Kundenwunsch gestaltet werden, bedeuten dabei eine überschaubare Investition. Unsere Bilder aus der Praxis zeigen einige der vielen Lösungsmöglichkeiten.

Sondermodelle

Trotz der Vielzahl an Standard Pressen gibt es Anwendungsfälle, bei denen die Modifikation von bestehenden Modellen nötig ist, um den Fertigungsprozess zu optimieren oder überhaupt möglich zu machen. Sondermodelle werden in Absprache mit Ihnen konstruiert und gestaltet wie z.B.:

- ▶ Erweiterte Arbeitshöhe oder Ausladung
- ▶ Anwenderspezifische Sonderfunktionen

Handkraft-Begrenzung über Drehmoment

Verlängerung der Arbeitshöhe

Pressenköpfe / Pressen-Ständer

Pressenköpfe sind Bausteine für die Automation oder den Sondermaschinenbau. Deshalb kann von allen Pressen der Pressenkopf einzeln für einen individuellen Einbau bezogen werden. Aufwendige und kostspielige Sonderkonstruktionen werden so durch den Einsatz fertiger Bausätzen vermieden, Kosten gesenkt.

Kopf Hand-Kniehebelpresse

Kopf Zahnstangenpresse

Kopf Druckluft-Kniehebelpresse

Kopf direktwirkende Druckluftpressen

Pressenständer in Schweißkonstruktion

Sie haben eine geeignete Presse aus unserem Standard Programm gefunden, aber der Einbauraum unter der Presse passt nicht zu Ihrer Vorrichtung oder Ihrem Teil?

Nennen Sie uns die Ausladung und den Bereich der Arbeitshöhe, die Sie benötigen. Wir fertigen für Sie einen Pressenständer mit den von Ihnen gewünschten Maßen, an den dann der benötigte Pressenkopf angebaut wird.

Modifizierbare Vorkonstruktionen in unserer CAD Bibliothek ermöglichen eine schnelle und kostengünstige Herstellung.

Beispiel eines Pressenständers mit erweiterter Arbeitshöhe.

Handhebelpressen

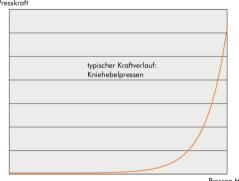
Beispiel: Kniehebelpresse

Beispiel: Zahnstangenpresse

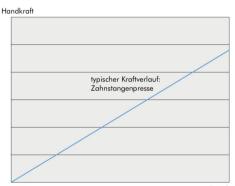
Beispiel: höhenverstellbarer Pressenkopf

Druckkraftbereich: von 500 N bis 30 kN

Handhebelpressen bieten hohe Wirtschaftlichkeit für Produktionsprozesse und Seriengrößen, die keine Automation erfordern. Dort können sie schnell und flexibel eingesetzt werden.


Wir stellen zwei Arten Handhebelpressen mit verschiedenen Kraftverläufen her: Kniehebelpressen und Zahnstangenpressen. Fast alle Handhebelpressen sind sowohl mit Rundstößel als auch mit Vierkantstößel lieferbar.

Die Diagramme zeigen den unterschiedlichen Kraftverlauf der beiden Systeme.


- ▶ Bei Kniehebelpressen steigt der Kraftverlauf zum Hubende exponentiell an. Die Nennkraft der Presse wird deshalb erst kurz vor Erreichen des unteren Totpunktes erreicht.
- ▶ Zahnstangenpressen hingegen haben einen konstanten Kraftverlauf über den gesamten Hub. Die Presskraft steht bei diesem Pressentyp in direkter Relation zu der eingesetzten Handkraft.

Qualitätsmerkmale

- ▶ Einfache und schnelle Höhenverstellung des Pressenkopfs über eine Gewindespindel
- ▶ Gehärteter und geschliffener Stößel
- Lange, gehonte und deshalb hochpräzise Rundstößelführung
- ▶ Hochgenaue Vierkantstößelführung durch einstellbare Führungsleisten
- ▶ Geschliffener Pressentisch
- ▶ Handhebelpressen sind praktisch wartungsfrei

Pressen Hub

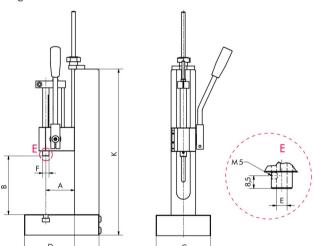
Presskraft

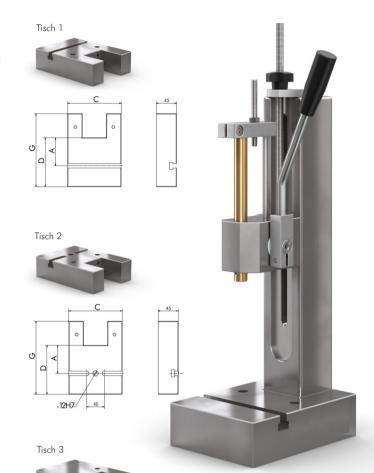
Laborpressen

Ihre Produkte fordern besondere Umgebungsbedingungen und stellen hohe Ansprüche an die Oberfläche der von Ihnen verwendeten Presse? Sie soll nicht nur rostfrei, gut zu reinigen und zu desinfizieren sein, sondern darf zusätzlich auch nicht von den Reinigungsmitteln angegriffen werden?

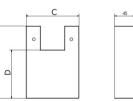
Hier kommt die LAB Presse zum Einsatz.

LAB Press


- Grundkörper aus verchromten Aluminium
- Alle äußeren Teile rostfreier Stahl oder Kunststoff
- Pressen Stößel TiN beschichtet
- Bewegliche Teile in Buchsen von der FDA zugelassenen Kunststoff gelagert


Varianten

Statt der LAB Press können auch Handhebelpressen aus dem Standard Programm an Ihre Wünsche angepasst werden.


- Standard Handhebelpressen Modelle mit vernickelter Gusskörper Oberfläche
- Pressenkörper aus rostfreiem Stahl

Fragen Sie nach der Machbarkeit.

LAB Press Z1-80

ур			LAB Press Z1-80	LAB Press Z1-80 L
Druckkraft		Ν	750	750
Arbeitshub		mm	80	80
Ausladung	А	mm	63	63
Arbeitshöhe	В	mm	45-250	45-350
Tischgröße	CxD	mm	120x110	120x110
Stößelbohrung Ø x Tiefe	Е	mm	6H7 x 12	6H7 x 12
Stößel Ø	F	mm	16	16
Ständerhöhe		mm	365	465
Platzbedarf	CxG	mm	90 x 80	90 x 80
Gewicht		kg	6,1	6,3

Tischplatte			
Tisch 1 T-Nut Nutbreite ähnlich DIN 650	mm	10	10
Tisch 2 T-Nut mit TB	mm	12H7	12H7
Tisch 3 plan			

Standard-Presse mit chemisch vernickeltem Gussteil, ansonsten rostfreier Stahl.

Extras für Handhebelpressen

Piktogramme zeigen Ihnen im Katalog, welche Extras an welchen Pressen möglich sind.

Druckpunkt-Feineinstellung (DP)

Da Kniehebelpressen ihre maximale Kraft erst im UT erreichen, ist die Höheneinstellung des Pressenkopfs über die Gewindespindel oft zu ungenau. Mit der Druckpunkt-Feineinstellung kann der Druckpunkt der Presse präzise direkt am Stößel eingestellt werden. Die Skala am Justierring erlaubt eine ablesbare Feineinstellung von 0,02 mm. Der Verstellbereich beträgt ±1,5 mm.

Die Druckpunkt-Feineinstellung wird eingesetzt, wenn es auf höchste Präzision der Einpresstiefe ankommt. Ideal für den Prototypenbau und die Serienfertigung, wenn genaues und leichtes Einstellen innerhalb des Toleranzbereichs gefordert ist.

Mikrometeranschlag (MICRO)

Bei Zahnstangenpressen kommt für hochpräzise Montagearbeiten, oder wenn das Werkstück genau positioniert werden muss, der Mikrometeranschlag zum Einsatz. Mit ihm kann die Hublänge der Presse auf 0,01 mm genau eingestellt werden.

Tischbohrung (TB)

In der zentrischen Tischbohrung können Werkzeugunterteile aufgenommen werden. Die Fixierung erfolgt mittels einer Querschraube bei allen Modellen bis 80mm Ausladung. Die Tischbohrung ermöglicht einen schnellen Werkzeugwechsel und reduziert die Einrichtzeit. Die Fluchtungsgenauigkeit der Stößelbohrung zur Tischbohrung beträgt <0,05 mm.

Hubzähler (Z)

Mit dem fünfstelligen Hubzähler lässt sich die produzierte Stückzahl schnell überblicken. Die Stückzahl kann zurückgesetzt werden.

Hubsicherung (HS)

Die Hubsicherung für Kniehebel- und Zahnstangenpressen ist ein effektiver Beitrag zur Qualitätssicherung während der Produktion. Mit der Hubsicherung sind Teilhübe – und damit unvollständige Arbeitsgänge – ausgeschlossen. Verformungs-, Füge- oder Verbindungsvorgänge werden immer und sicher komplett ausgeführt: Beim Abwärtshub ist der Rückhub der Presse blockiert. Erst wenn der Hub komplett durchgeführt wurde, wird die Verriegelung gelöst, und der Hebel kann zurückgestellt werden.

Der Lösemechanismus Quick-Release ermöglicht, dass die Sperrung in jeder Position gelöst und verkantete Teile entnommen werden können. Beim Rückstellen des Hebels wird Quick-Release automatisch wieder deaktiviert.

H2H-Sicherung (H2H) für Handkniehebelpressen

Die Gefahrenanalyse eines Hand-Kniehebelpressen Arbeitsplatzes kann ergeben, dass die Verwendung einer 2-Handsicherung angebracht ist. Dies gilt insbesondere beim Einsatz von Mitarbeitern mit Behinderung oder bei Arbeitsabläufen, die das Eingreifen in den Einpressprozess als unbewusste Reaktion herausfordern können.

Wir bietet deshalb jetzt die H2H-Sicherung für Hand-Kniehebelpressen an, die in der Regel in der Serienproduktion verwendet werden. Mit der H2H-Sicherung soll das Eingreifen in die Stößel Bewegung verhindert werden, da beide Hände aus dem Gefahrenbereich genommen werden müssen, um die Presse zu bedienen. Mit der linken Hand muss erst die H2H-Sicherung durch Druck nach unten gelöst werden, bevor mit der rechten Hand der Handhebel der Presse nach unten gezogen werden kann. Wird während des Pressenhubs die H2H-Sicherung gelöst, blockiert die Presse die Bewegung nach unten, kann aber jederzeit in die Ausgangstellung zurückgestellt werden.

Praktisches Zubehör

ERGO-Handgriff für alle Handhebelpressen.

Der ERGO-Handgriff für mäder Handhebelpressen erhöht die Ergonomie. Der waagrechte, drehbare Handgriff erlaubt umgrifffreies Betätigen der Presse und erhöht die Bedienerfreundlichkeit.

Wenn Ihre Handhebelpresse mobil bleiben soll.

Die auf der praktischen **Grundplatte** befestigte Handhebelpresse steht sicher und kippt nicht. Gummi Stopper verhindern das Verrutschen. Zwei verschiebbare Gewindeeinsätze können auf den Abstand der Befestigungsbohrungen der Presse angepasst werden.

Kniehebelpressen mit Rundstößel

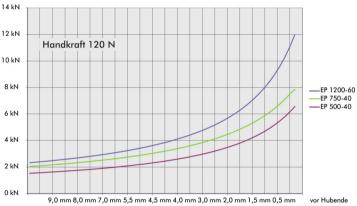
Die Extras

EP 500-40 EP 750-40 VK 500-40 VK 750-40

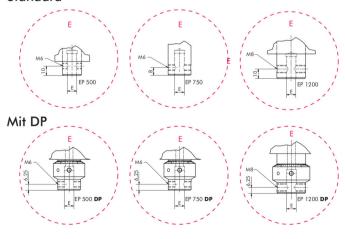
Hand-Kniehebelpressen mit Rundstößel **EP-Serie**

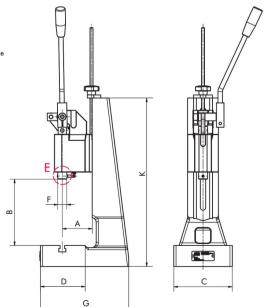
EP Typ Kniehebelpressen in den Größen 5 kN, 7,5 kN und 12 kN sind dimensioniert, um an Handarbeitsplätzen Serien- oder Einzelanfertigungen herzustellen.

Da die nominale Endkraft am Hubende entsteht, kann große Kraft punktgenau dort eingesetzt werden, wo sie gebraucht wird. Die aufzubringende Handkraft von 120 N ist anwenderfreundlich. Da viele Anwendungen mit weniger Kraft auskommen, ist ermüdungsfreies Arbeiten auch bei Serienfertigung möglich.


ERGOPRESS®-Handhebel

- Ergonomischer Bedienerkomfort.
- ▶ 360° stufenlos verstellbar
- ▶ Seitlich abgewinkelter Hebel: freier Blick auf Arbeitsbereich und ergonomisch angenehme Position.
- ▶ Einfaches und schnelles Umrüsten für Linkshänder (außer bei HS und Z Option), ohne dass die Werkzeugeinstellung verloren geht. Ideal bei Jobsharing an einer Presse.


EP Typ Pressen sind moderne Produktionswerkzeuge mit hoher Präzision. Das bedienerfreundliche Design erhöht die Produktivität und verhindert arbeitsplatzbedingte Zwangs- und Fehlhaltungen der Bediener.



Handhebel umsteckbar für Links- oder Rechtshänder

Standard

EP Serie L-EP Serie mit extra großer Arbeitshöhe

EP 750-40

mit Extras

DP - Druckpunkt-Feineinstellung

HS - Hubsicherung

ausgerüstet mit ERGO-Handgriff*

L-EP 1200-60

Тур			EP 500-40	EP 750-40	L-EP 750-40	EP 1200-60	L-EP 1200-60
Druckkraft		kN	5,0	7,5	7,5	12,0	12,0
Arbeitshub		mm	40	40	40	60	60
Ausladung	А	mm	63	80	80	80	80
Arbeitshöhe	В	mm	40 - 213	58 - 265	55 - 375	62 - 240	75 - 338
Arbeitshöhe mit DP	В	mm	20 - 197	38 - 250	39 - 359	48 - 231	53 - 328
Tischgröße	CxD	mm	110 x 65	157 x 115	156 x 115	157 x 115	157 x 115
Nutbreite ähnlich DIN 650		mm	10	12	12	12	12
Stößelbohrung Ø x Tiefe	Е	mm	10H7 x 25	10H7 x 25	10H7 x 25	10H7 x 30	10H7 x 30
Stößelbohrung Ø x Tiefe mit DP	Е	mm	10H7 x 25	10H7 x 25	10H7 x 25	10H7 x 25	10H7 x 25
Stößel ∅	F	mm	20	24	24	30	30
Platzbedarf	CxG	mm	110 x 164	157 x 237	156 x 275	157 x 237	156 x 275
Ständerhöhe	K	mm	355	450	570	450	570
Gewicht		kg	са. 10	са. 20	са. 28	са. 24	са. 32

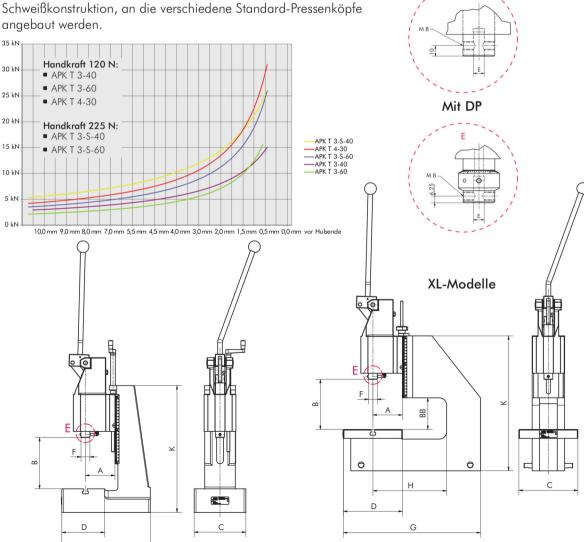
Extras (siehe Seite 8-9)	Bei Bestellung bitte angeben.								
Druckpunkt-Feineinstellung	DP	DP	DP	DP	DP				
Hubsicherung	HS	HS	HS	HS	HS				
Zähler	Z	Z	Z	Z	Z				
Tischbohrung 12 ^{H7}	TB	TB	ТВ	TB	TB				

^{*} nicht im Lieferumfang. Zubehör muss extra bestellt werden.

Kniehebelpressen mit Rundstößel

Die Extras

APK T-Serie


Die extra starken Hand-Kniehebelpressen der Serien APK T 3 und APK T 4 eignen sich speziell für den oft wechselnden Einsatz im Modellbau und in der Werkstatt. Ihre hohen Druckkräfte von bis zu 30 kN erlauben einen flexiblen Einsatz für die verschiedensten Anwendungsfälle.

Die Vorteile:

- ▶ Verschiedene Hublängen stehen zur Auswahl
- ▶ Extra stabile Konstruktion des Pressenständers
- ▶ Die Arbeitshöhe lässt sich über die serienmäßige Höhenverstellung des Pressenkopfs mittels einer Gewindespindel schnell verstellen
- ▶ Die Nennkraft der Presse ist mit durchschnittlichem Kraftaufwand zu erreichen

XL-APK T Serie mit 250 mm Ausladung

Überall, wo sperrige Teile verarbeitet werden, wird eine größere Ausladung verlangt: z.B. für die Bearbeitung von Leiterplatten, Blechen und ähnlichen Teilen. Hier werden XL-Pressen mit 250 mm Ausladung eingesetzt. Die Basis ist eine stabile Schweißkonstruktion, an die verschiedene Standard-Pressenköpfe angebaut werden.

Standard

APK T Serie
XL-APK T Serie mit 250 mm Ausladung

APK T 3-40 ausgerüstet mit ERGO-Handgriff*

APK T 3-S-60

XL-APK T 3-40

Тур			APK T3-40	APK T3-60	APK T3-S-40	APK T3-S-60	APK T4-30	XL-APK T3-40	XL-APK T3-60
Druckkraft		kN	15,0	15,0	25,0	25,0	30,0	15,0	15,0
Arbeitshub		mm	40	60	40	60	30	40	60
Ausladung	Α	mm	100	100	100	100	100	100	100
Ausladung C-Gestell	Н	mm	-	-	-	-	-	250	250
Arbeitshöhe	В	mm	49 - 168	51 - 172	60 - 290	65 - 295	55 - 285	88 - 166	90 - 168
Arbeitshöhe mit DP	В	mm	35 - 154	30 - 151	46 - 274	44 - 274	34 - 264	72 - 150	69 - 147
Arbeitshöhe C-Gestell	ВВ	mm	-	-	-	-	-	100	100
Tischgröße	CxD	mm	175 x 140	175 x 140	185 x 145	185 x 145	185 x 145	200 x 200	200 x 200
Nutbreite ähnlich DIN 650		mm	12	12	12	12	12	12	12
Stößelbohrung Ø x Tiefe	Е	mm	10H7 x 30	10H7 x 30	10H7 x 30	10H7 x 30	10H7 x 30	10H7 x 30	10H7 x 30
Stößelbohrung Ø x Tiefe mit DP			10H7 x 25	10H7 x 25	10H7 x 25	10H7 x 25	10H7 x 25	10H7 x 25	10H7 x 25
Stößel Ø	F	mm	30	30	30	30	30	30	30
Platzbedarf	CxG	mm	175 x 300	175 x 300	185 x 320	185 x 320	185 x 320	200 x 465	200 x 465
Ständerhöhe	K	mm	425	425	520	520	520	465	465
Gewicht		kg	са. 39	са. 43	са. 58	са. 63	са. 63	са. 54	са. 58

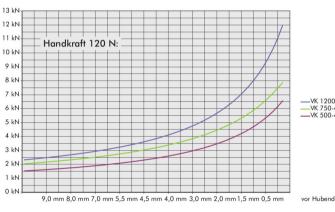
Extras (siehe Seite 8-9)	Bei Bestellung bitte angeben.							
Druckpunkt-Feineinstellung	DP	DP	DP	DP	DP	DP	DP	
Hubsicherung	HS	HS	HS	HS	HS	HS	HS	
Zähler	Z	Z	Z	Z	Z	Z	Z	
Tischbohrung 12H7	ТВ	TB	ТВ	ТВ	ТВ	ТВ	ТВ	

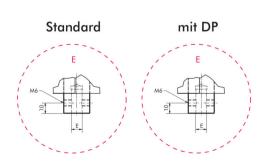
^{*} nicht im Lieferumfang. Zubehör muss extra bestellt werden.

Kniehebelpressen mit Vierkantstößel ■

Die Extras

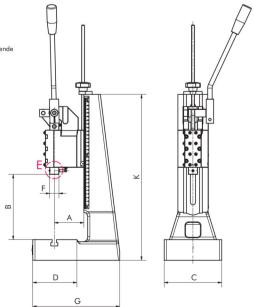
VK-Serie


Der Vierkantstößel hat entscheidende Vorteile gegenüber dem Rundstößel:

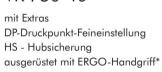

- ▶ Absolute Verdrehsicherheit
- ▶ Gehärteter und präzise geschliffener Stößel
- ▶ Spielfreie Führung des Pressenstößels
- ▶ Nachstellbare Führungsleisten des Vierkantstößels
- ▶ Große Auflagefläche für das Werkzeug
- ▶ Deshalb sind Führungen im Werkzeug meist unnötig
- ▶ Praktisch wartungsfreier Betrieb

Hand-Kniehebelpressen mit Vierkantstößel sind ideale Werkzeuge für die Fertigung präziser Kleinteile mit engen Toleranzen in kleineren und mittleren Serien, bei denen eine Automation zu kostenintensiv ist.

ERGOPRESS®-Handhebel


- ▶ Ergonomischer Bedienerkomfort.
- ▶ 360° stufenlos verstellbar
- ▶ Seitlich abgewinkelter Hebel: freier Blick auf Arbeitsbereich und ergonomisch angenehme Position.
- ▶ Einfaches und schnelles Umrüsten für Linkshänder (außer bei HS und Z Option), ohne dass die Werkzeugeinstellung verloren geht. Ideal bei Jobsharing an einer Presse.

Handhebel umsteckbar für Links- oder Rechtshänder



VK 750-40

Тур			VK 500-40	VK 750-40	L-VK 750-40	VK 1200-60	L-VK 1200-60
Druckkraft		kN	5,0	7,5	7,5	12,0	12,0
Arbeitshub		mm	40	40	40	60	60
Ausladung	А	mm	63	80	80	80	80
Arbeitshöhe	В	mm	40 - 213	53 - 265	55 - 375	45 - 245	52 - 338
Arbeitshöhe mit DP	В	mm	25 - 197	38 - 250	39 - 359	31 - 231	38 - 328
Tischgröße	CxD	mm	110 x 65	157 x 115	157 x 115	157 x 115	157 x 115
Nutbreite ähnlich DIN 650		mm	10	12	12	12	12
Stößelbohrung Ø x Tiefe	Е	mm	10H7 x 25	10H7 x 25	10H7 x 25	10H7 x 30	10H7 x 30
Stößelbohrung Ø x Tiefe mit DP	Е	mm	10H7 x 25	10H7 x 25	10H7 x 25	10H7 x 25	10H7 x 25
Stößelfläche	F	mm	21 x 21	25 x 25	25 x 25	31 x 31	31 x 31
Platzbedarf	CxG	mm	110 x 164	155 x 237	156 x 275	155 x 237	156 x 275
Ständerhöhe		mm	355	450	570	450	570
Gewicht		kg	са. 10	са. 20	са. 28	ca. 24	са. 32

Extras (siehe Seite 8-9)	Bei Bestellung bitte angeben.									
Druckpunkt-Feineinstellung	DP	DP	DP	DP	DP					
Hubsicherung	HS	HS	HS	HS	HS					
Zähler	Z	Z	Z	Z	Z					
Tischbohrung 12H7	ТВ	ТВ	ТВ	TB	ТВ					

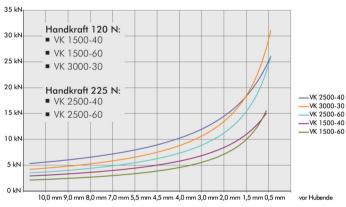
^{*}nicht im Lieferumfang. Zubehör muss extra bestellt werden.

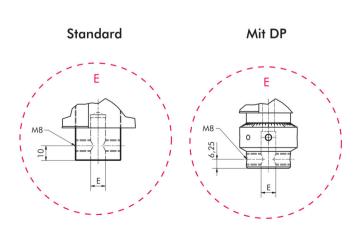
Kniehebelpressen mit Vierkantstößel ■

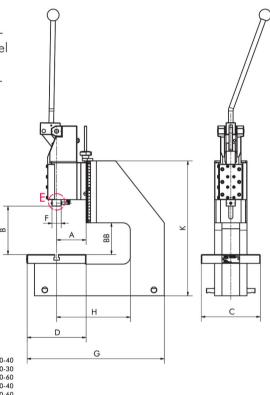
Die Extras

VK-Serie

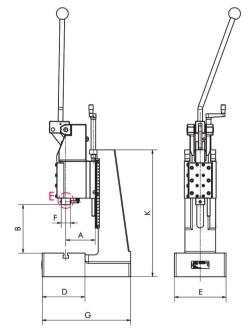
Die extra starken Hand-Kniehebelpressen der VK-Serie eignen sich speziell für den oft wechselnden Einsatz im Modellbau und in der Werkstatt. Ihre hohen Druckkräfte von bis zu 30 kN erlauben einen flexiblen Einsatz für die verschiedensten Anwendungsfälle.


Die Vorteile:


- ▶ Verschiedene Hublängen stehen zur Auswahl
- ▶ Extra stabile Konstruktion des Pressenständers
- ▶ Die Arbeitshöhe lässt sich über die serienmäßige Höhenverstellung des Pressenkopfs mittels einer Gewindespindel schnell verstellen
- ▶ Die Nennkraft der Presse ist mit durchschnittlichem Kraftaufwand zu erreichen


XL-VK Serie mit 250 mm Ausladung

Überall, wo sperrige Teile verarbeitet werden, wird eine größere Ausladung verlangt: z.B. für die Bearbeitung von Leiterplatten, Blechen und ähnlichen Teilen. Hier werden XL-Pressen mit 250 mm Ausladung eingesetzt.


Die Basis ist eine stabile Schweißkonstruktion, an die verschiedene Standard-Pressenköpfe angebaut werden.

XL-Modelle

VK 1500-40 ausgerüstet mit ERGO-Handgriff*

VK 2500-60

XL-VK 1500-40

Тур			VK 1500-40	VK 1500-60	VK 2500-40	VK 2500-60	VK 3000-30	XL-VK 1500-40	XL-VK 1500-60
Druckkraft		kN	15,0	15,0	25,0	25,0	30,0	15,0	15,0
Arbeitshub		mm	40	60	40	60	30	40	60
Ausladung	Α	mm	100	100	100	100	100	100	100
Ausladung C-Gestell	Н	mm	-	-	-	-	-	250	250
Arbeitshöhe	В	mm	49 - 168	49 - 168	60 - 290	65 - 295	65 - 295	80 - 166	88 - 166
Arbeitshöhe mit DP	В	mm	35 - 154	35 - 154	46 - 274	44 - 274	44 - 274	72 - 150	72 - 150
Arbeitshöhe C-Gestell	BB	mm	÷	-1	-	-	-	100	100
Tischgröße	CxD	mm	175 x 140	175 x 140	185 x 145	185 x 145	185 x 145	200 x 200	200 x 200
Nutbreite ähnlich DIN 650		mm	12	12	12	12	12	12	12
Stößelbohrung Ø x Tiefe	Е	mm	10H7 x 30	10H7 x 30					
Stößelbohrung Ø x Tiefe mit DP	Е	mm	10H7 x 25	10H7 x 25					
Stößelfläche	F	mm	31 x 31	31 x 31					
Platzbedarf	CxG	mm	175 x 300	175 x 300	185 x 320	185 x 320	185 x 320	200 x 465	200 x 465
Ständerhöhe	K	mm	425	425	520	520	520	465	465
Gewicht		kg	са. 39	са. 43	са. 58	са. 63	ca. 63	ca. 55	са. 59

Extras (siehe Seite 8-9)	Bei Bestellung bitte angeben.							
Druckpunkt-Feineinstellung	DP	DP	DP	DP	DP	DP	DP	
Hubsicherung	HS	HS	HS	HS	HS	HS	HS	
Zähler	Z	Z	Z	Z	Z	Z	Z	
Tischbohrung 12H7	ТВ	ТВ	ТВ	ТВ	TB	TB	ТВ	

^{*}nicht im Lieferumfang. Zubehör muss extra bestellt werden.

Zahnstangenpressen mit Rundstößel •

Die Extras

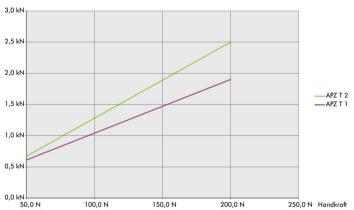
APZ-Serie

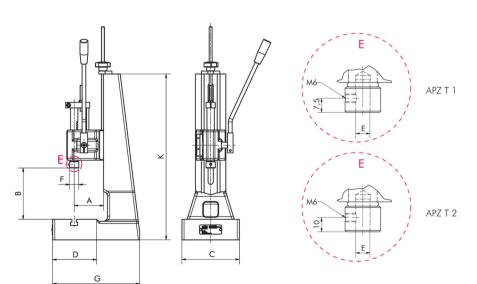
Zahnstangenpressen vermitteln ihre Druckkraft konstant über die gesamte Hublänge. Die direkte Kraftübertragung über den Handhebel erlaubt feinfühliges Arbeiten.

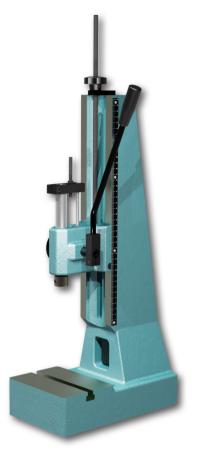
Zahnstangenpressen werden deshalb dort eingesetzt, wo ein konstanter Kraftverlauf über einen längeren Hub benötigt wird.

Handhebel mit ergonomischem Bedienerkomfort

- ▶ 360° drehbar: Anpassung auf jede Körpergröße und Anwendung.
- ► Seitlich abgewinkelter Hebel: freier Blick auf Arbeitsbereich und ergonomisch angenehme Position.
- ▶ R/L Version: Einfaches und schnelles Umrüsten für Linkshänder ohne dass die Werkzeugeinstellung verloren geht. Ideal bei Jobsharing an einer Presse.




Handhebel umsteckbar für Links- oder Rechtshänder



APZ T 2-50 mit Extras

HS - Hubsicherung MICRO - Mikrometeranschlag ausgerüstet mit ERGO-Handgriff**

L-APZ T 2-50

Тур			APZ T1-40	APZ T1-90	APZ T2-50	APZ T2-100	L-APZ T2-50	L-APZ T2-100
Druckkraft		kN	1,5	1,5	2,5	2,5	2,5	2,5
Arbeitshub		mm	40	90	50	100	50	100
Ausladung	А	mm	63	63	80	80	80	80
Arbeitshöhe	В	mm	40 - 235	40 - 235	42 - 290	42 - 290	55 - 390	55 - 390
Tischgröße	CxD	mm	110 x 65	110 x 65	157 x 115	157 x 115	157 x 115	157 x 115
Nutbreite ähnlich DIN 650		mm	10	10	12	12	12	12
Stößelbohrung Ø x Tiefe	Е	mm	10H7 x 25	10H7 x 25	10H7 x 25	10H7 x 25	10H7 x 25	10H7 x 25
Stößel Ø	F	mm	25	25	25	25	25	25
Platzbedarf	CxG	mm	110 x 164	110 x 164	157 x 237	157 x 237	156 x 275	156 x 275
Ständerhöhe	K	mm	355	355	450	450	570	570
Gewicht		kg	ca. 8,5	ca. 8,5	ca. 21	ca. 21	ca. 29	ca. 29

Extras (siehe Seite 8-9)	Bei Bestellung bitte angeben.								
Hubsicherung	HS	HS	HS	HS	HS	HS			
Mikrometer	MICRO	MICRO	MICRO	MICRO	MICRO	MICRO			
Zähler	Z	Z	Z	Z	Z	Z			
Tischbohrung 12H7	ТВ	TB	ТВ	TB	ТВ	TB			
Links-/Rechtshänder Version*	R/L	R/L	R/L	R/L	R/L	R/L			

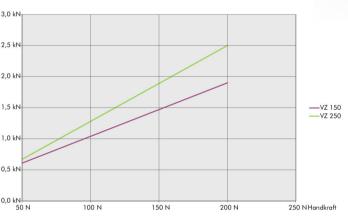
^{*} Nur mit den Extras MICRO und TB kombinierbar

^{**}nicht im Lieferumfang. Zubehör muss extra bestellt werden.

Zahnstangenpressen mit Vierkantstößel

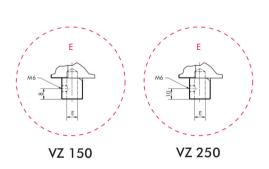
Die Extras

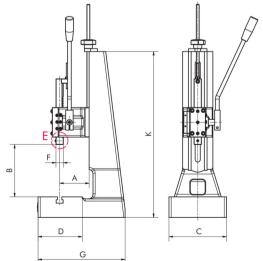
VZ-Serie


Der Vierkantstößel hat entscheidende Vorteile gegenüber dem Rundstößel:

- ▶ Absolute Verdrehsicherheit
- ▶ Spielfreie Führung des Pressenstößels
- ▶ Nachstellbare Führungsleisten des Vierkantstößels
- ▶ Große Auflagefläche für das Werkzeug
- ▶ Deshalb sind Führungen im Werkzeug meist unnötig
- ▶ Praktisch wartungsfreier Betrieb

Zahnstangenpressen mit Vierkantstößel sind ideale Werkzeuge für die Fertigung präziser Kleinteile mit engen Toleranzen in kleineren und mittleren Serien, bei denen eine Automation zu kostenintensiv ist.


Handhebel mit ergonomischem Bedienerkomfort


- ▶ 360° drehbar: Anpassung auf jede Körpergröße und Anwendung.
- ► Seitlich abgewinkelter Hebel: freier Blick auf Arbeitsbereich und ergonomisch angenehme Position.
- ▶ R/L Version: Einfaches und schnelles Umrüsten für Linkshänder ohne dass die Werkzeugeinstellung verloren geht. Ideal bei Jobsharing an einer Presse.

Handhebel umsteckbar für Links- oder Rechtshänder

mit Extras HS - Hubsicherung MICRO - Mikrometeranschlag ausgerüstet mit ERGO-Handgriff**

L-VZ 250-50

Тур			VZ 150-40	VZ 150-90	VZ 250-50	VZ 250-100	L-VZ 250-50	L-VZ 250-1@0
Druckkraft		kN	1,5	1,5	2,5	2,5	2,5	2,5
Arbeitshub		mm	40	90	50	100	50	100
Ausladung	Α	mm	63	63	80	80	80	80
Arbeitshöhe	В	mm	35 - 235	35 - 235	42 - 290	42 - 290	55 - 390	55 - 390
Tischgröße	CxD	mm	110 x 65	110 x 65	157 x 115	157 x 115	157 x 115	157 x 115
Nutbreite ähnlich DIN 650		mm	10	10	12	12	12	12
Stößelbohrung Ø x Tiefe	Е	mm	10H7 x 25	10H7 x 25	10H7 x 25	10H7 x 25	10H7 x 25	10H7 x 25
Stößelfläche	F	mm	20 x 20	20 x 20	20 x 20	20 x 20	20 x 20	20 x 20
Platzbedarf	CxG	mm	110 x 164	110 x 164	157 x 237	157 x 237	156 x 275	156 x 275
Ständerhöhe	K	mm	355	355	450	450	570	570
Gewicht		kg	ca. 8,5	ca. 8,5	ca. 21	ca. 21	са. 29	са. 29

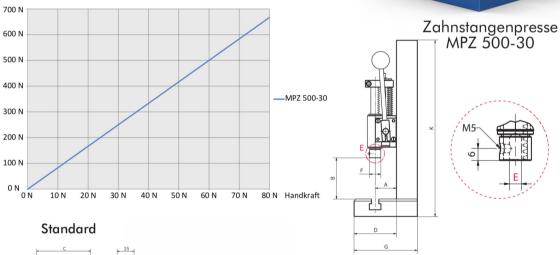
Extras (siehe Seite 8-9)	Bei Bestellung bi	Bei Bestellung bitte angeben.							
Hubsicherung	HS	HS	HS	HS	HS	HS			
Mikrometer	MICRO	MICRO	MICRO	MICRO	MICRO	MICRO			
Zähler	Z	Z	Z	Z	Z	Z			
Tischbohrung 12H7	TB	TB	TB	ТВ	ТВ	ТВ			
Links-/Rechtshänder Version*	R/L	R/L	R/L	R/L	R/L	R/L			

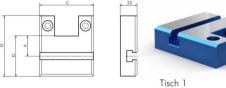
^{*} Nur mit den Extras MICRO und TB kombinierbar

^{**}nicht im Lieferumfang. Zubehör muss extra bestellt werden.

MicroPress® Zahnstangenpresse •

Die Extras




Die MicroPress® Zahnstangenpresse MPZ 500 ist besonders geeignet für präzise Montagearbeiten in der Feinmechanik bei der die benötigte Kraft gering ist, der Bediener aber gleichzeit feinfühlig arbeiten möchte.

Die Vorteile:

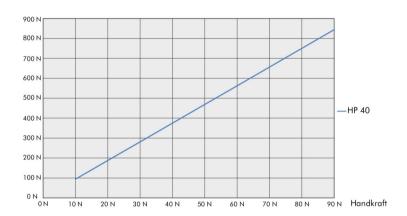
- ▶ Pressentisch mit T-Nut als Standard im Lieferumfang
- ▶ Alternativ Pressentische mit Tischbohrung TB oder in planer Ausführung oder nach Kundenwunsch lieferbar.
- Mit wenigen Handgriffen umstellbar von Rechtsauf Linkshänder Bedienung.
- ▶ Verstellbare Arbeitshöhe
- ▶ Präzise Führung des Stößels
- ▶ Gedämpfter Rückhub
- ▶ Hublänge einstellbar
- ▶ Handhebel 360° einstellbar
- ▶ Leichte Bauweise

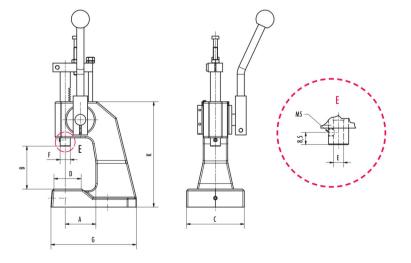
		Tisch 1
Zubehör*		
c	25	

30 a 8H7		Tisch 2	
0 0	25	Tisch 3	

Тур			MPZ 500-30
Druckkraft		Ν	500
Arbeitshub		mm	25
Ausladung	Α	mm	30
Arbeitshöhe	В	mm	25 - 150
Tischgröße	CxD	mm	80 x 60
Stößelbohrung Ø x Tiefe	Е	mm	6H7 x 12
Stößel ∅	F	mm	16
Platzbedarf	CxG	mm	80 x 90
Ständerhöhe		mm	250
Gewicht		kg	ca. 1,5
Tischplatte			
Tisch 1 T-Nut Nutbreite ähnlich DIN 650		mm	10
Tisch 2 T-Nut mit TB		mm	8H7
Tisch 3 plan			

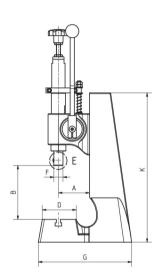
^{*}nicht im Lieferumfang. Zubehör muss extra bestellt werden.

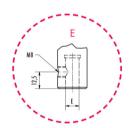

Zahnstangenpresse

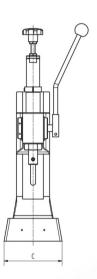

Die Micro-Zahnstangenpresse HP 40 stellt die klassische Uhrmacher Zahnstangenpresse dar. Ihre kleine, kompakte Bauart ermöglicht im unteren Kraftsegment präzises und gefühlvolles Arbeiten. Die Tischbohrung fluchtet zur Stößelbohrung und ermöglicht schnellen und präzisen Werkzeugwechsel. Gerade bei kleinen Serien oder Einzelteilproduktion ist dies von Vorteil.

Die Vorteile:

- ▶ Hublänge stufenlos einstellbar
- Präzise Führung des Stößels
- ▶ Handhebel frei positionierbar


Тур			HP 40
Druckkraft		Ν	750
Arbeitshub		mm	35
Ausladung	Α	mm	40
Arbeitshöhe	В	mm	60
Tischgröße	CxD	mm	80 x 35
Stößelbohrung Ø x Tiefe	Е	mm	7H7 x 20
Stößel Ø	F	mm	14
Tischbohrung		mm	12H7
Gewinde im Tisch		mm	2 x M6
Gewindeabstand		mm	50
Platzbedarf	CxG	mm	80 x 118
Ständerhöhe	K	mm	149
Gewicht		kg	са. 4,0


Federschlagpressen


Federschlagpressen

ldeal zum Prägen von kleinen Stückzahlen oder zum Nieten.

Die Arbeitsweise ist denkbar einfach: Sobald der Stößel mit dem eingespannten Werkzeug das Werkstück erreicht, wird durch die Handkraft am Handhebel eine Feder gespannt. Am Ende des Federspannhubs wird die gespeicherte Federenergie dann schlagartig auf das Werkstück übertragen. Die Schlagkraft der Presse kann über den Sterngriff stufenlos eingestellt werden.

Federschlagpresse HP 200 FE

Тур	HP 200 FE	HP 250 FE		
Druckkraft		kN	5,5	5,5
max. Hub		mm	60	60
Federspannhub		mm	20	20
Ausladung	А	mm	75	75
Arbeitshöhe	В	mm	35 - 170	35 - 230
Tischgröße	CxD	mm	80 x 120	80 x 120
Stößelbohrung Ø x Tiefe	Е	mm	10H7 x 25	10H7 x 25
Stößel Ø	F	mm	22	22
Platzbedarf	CxG	mm	140 x 220	140 x 220
Ständerhöhe	K	mm	360	420
Gewicht		kg	ca. 20,0	ca. 20,5

Richtwerkzeug für Handhebelpressen

Das Richtwerkzeug kann mit jeder mäder Hand-Kniehebelpresse verwendet werden. Es besteht aus dem Richttisch, der auf die Presse aufgespannt wird, dem Richtstempel, zwei Aufnahmen für das Werkstück und dem Messuhrhalter mit Abtaster des Werkstücks. Eine Messuhr befindet sich nicht im Lieferumfang, kann aber mitgeliefert werden.

Das Richtwerkzeug besteht aus den folgenden Einzelkomponenten:

- Messtaster TRT 200
- Richtbock Paar RB 1-200
- Richtplatten RP 1-W
- Richttisch RT 1-200

• Richtstempel RST-H


Modell			RT 1-200	RB 1-200	RP 1-W	RST-H
Größe	AxB	mm	400 x 80	55 x 25		
Höhe		mm	60	60		
Größe Richtplatte		mm		35 x 30 x 10	35 x 30 x 10	
T-Nut		mm	10	10		
Spannzapfen		mm				10h8
Gewicht		kg	ca. 7,5	ca. 1		

RB 1-200 mit RP 1-W

RP 1-W

RT 1-200

RST-H

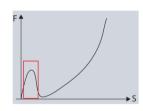
TRT 200 mit optionaler Messuhr

Modell	TRT 200	
Messuhraufnahme	mm	8H7
Messbereich	mm	5
Gewicht	kg	ca. 0,5

Einpressprozesse kostengünstig überwachen und protokollieren.

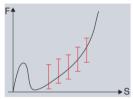
Der TPC ForceMaster lässt sich einfach und schnell einrichten:

Sensorerkennung

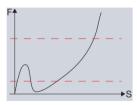

Die Stecker des Kraft- und des Wegsensors sind unvertauschbar steckbar. Im Stecker sind auf einer Platine die Kenndaten des Sensors bereits gespeichert. Beim Einschalten des TPC ForceMasters werden die Sensoren erkannt und der Nullpunkt gefunden. Werden die Sensoren ausgetauscht, wird der Sensorwechsel im Display angezeigt und muss bestätigt werden.

Autokonfiguration

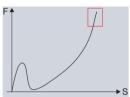
Der TPC ForceMaster erstellt einen Prozessüberwachungsvorschlag durch einmaliges Einlernen eines Gutteils. Dieser Vorschlag kann entweder akzeptiert oder manuell am Gerät selbst oder mittels der mitgelieferten Software modifiziert werden. Ein Gutteil besteht aus Teilen, bei denen vor dem Pressprozess überprüft wurde, ob sie innerhalb der Fertigungstoleranzen liegen und von denen deshalb zu erwarten ist, dass beim Pressen ein Gutteil gefertigt wird.


Bewertungsarten

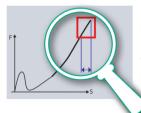
Einfädeln


Der Einfädelbereich überprüft, ob beim Beginn eines Fügevorgangs eine zulässige Maximalkraft überschritten wird. Ein Alarm warnt dann, dass möglichweise Teile oder das Werkzeug beschädigt werden können. Der Einfädelbereich muss aktiviert werden.

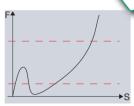
Tore


Bei der Autokonfiguration werden 5 Tore aktiviert. Ein Tor ist durch eine Wegposition und eine minimale und maximale Kraft definiert. Die Kraftwegkurve für Gutteile muss alle Tore passieren und darf nicht um ein Tor herumführen. Die Bewertung erfolgt, wenn der Pressenhub die Wegposition aller Tore überschritten hat.

Kraftschwellen


Kraftschwellen definieren eine zu erreichende Mindestkraft und eine nicht zur überschreitende Maximalkraft, innerhalb deren der gesamte Einpressprozess stattfinden muss, nachdem die Mindestkraft erreicht wurde.

Blockbereich Endlage


Oft endet der Einpressprozess mit hoher Kraft am Ende des Hubs: dem Blockbereich. Er definiert sich über einen Weg- und Kraftbereich der weder unter, noch überschritten werden darf. Der Blockbereich ist nach der Autokonfiguration immer inaktiv und muss bei Bedarf aktiviert werden.

Verstemmweg

Bei Verformungsprozessen, die am Hubende stattfinden, kann zusätzlich der Verstemmweg überwacht werden. Die Verstemmweg-Überwachung kann nur bei aktivem Blockbereich zugeschaltet werden. Der Verstemmweg wird errechnet aus der Differenz der Wegdifferenz zwischen dem Erreichen des Blockbereichs und Beginn des Rückhub.

Kraftalarm

Kraftalarme dienen zur Überwachung des Kraftsensors und führen nicht zu einer NIO Bewertung. Es steht Kraftalarm oben und unten zur Verfügung. Kraftalarme können z.B. für Schaltfunktionen verwendet werden.

IO/NIO Meldungen

Der ForceMaster bestätigt das Fertigen eines IO Teils mit einer grünen Leuchtanzeige. Ein NIO Teil wird über einen einstellbaren Signalton und einer roten Leuchtanzeige gemeldet. Standardmäßig ist der TPC ForceMaster so voreingestellt, dass die NIO Meldung nur in Zusammenhang mit einer Masterkarte quittiert werden kann. Bei der manuellen Konfiguration des Messprogramms kann diese Funktion deaktiviert werden.

ForceMaster Aufbau

Von links nach rechts:

- Karteneinschub
- Lautsprecher
- ▶ IO / NIO Leuchten
- ▶ Dreh- und Druckknopf zur Programmierung

ForceMaster 9110 K. max 217 N W. max 39.5 mm OK NOK

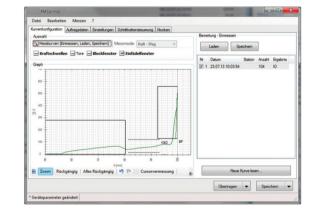
Zähler

Sechs Zählertypen sind über das Konfigurationsmenü einstellbar:

- ▶ IO Teile
- ▶ NIO Teile
- ▶ Summe aller Teile
- Rückwärtszähler
- R-Set (Setzwert für Rückwärtszähler)
- ▶ Gesamthub Zähler

Software

Die Software zum Visualisieren und Korrigieren der Autokonfiguration ist im Lieferumfang enthalten.


Optionen:

USB Schnittstelle für USB Stick

Kurvendaten können zu Dokumentations- und Auswertungszwecken auf einen USB-Stick gespeichert werden. Die Zykluszeit sollte ≥ 3 Sekunden betragen.

Nocken SPS

Die Nocken SPS funktioniert wie eine elektronische, weggesteuerte Schrittkettensteuerung. Beim Erreichen einer

Nocke wird zusätzlich die Bewegungsrichtung des Pressenstößels ausgewertet. Dies erlaubt, eine Aktion den Nockenbereich zu programmieren, die abhängig von Arbeitshub oder vom Rückhub wird. Basis ist eine Schrittkettensteuerung, bei der eine Reihe von Befehlen nacheinander abgearbeitet wird. Erst wenn eine Bedingung erfüllt ist, wird eine Aktion ausgeführt und zum nächsten Schritt gesprungen.

Zur Programmierung stehen 8 Eingänge und 8 Ausgänge zur Verfügung. Die Nocken SPS kann nicht zur Pressensicherheit verwendet werden.

SmartCards

Werkzeugkarte SPS Karte

Eindimensionaler Betrieb

Der TPC ForceMaster kann auch nur mit Kraftsensor betrieben werden.

TPC ForceMaster Technische Daten

Allgemeine Gerätedaten

Anzeige: 2-zeilige beleuchtete LCD-Anzeige

Warn- und Quittierungstöne: einstellbar in der Signalart

Warntonlautstärke: bis zu 100 dB

Messkanäle: Kraft/Weg oder Kraft/Zeit

Kommunikationsschnittstellen: USB – Slave Port Typ B, rückseitig

RS232 – D-SUB 9, Datenrate 19,2 kBaud

Schnittstelle: USB, RS232 Messfehler: 0,5 % v.E.

Netzanschluss: 90 ... 240 V AC / 50 ... 60 Hz

Grenzfrequenz: 1 kHz
Arbeitstemperaturbereich: 0 ... 60 °C

Luftfeuchtigkeit: 10 ... 80 %, nicht betauend

Gehäuseart: Alu-Profil-Gehäuse

Schutzart: IP20

Anschlüsse: codierte Spezialstecker

Abtastrate: 10 kHz

Anzahl E/A: 8 Eingänge / 8 Ausgänge Maße (B x H x T): 150 x 95 x 260 [mm]

Gewicht: ca. 3 kg

TPC ForceMaster Sensoren

DMS Kraftsensor für TPC ForceMaster

Die idealen, anwenderfreundlichen Kraftsensoren für Handhebelpressen.

- Sensor Kenndaten sind auf einer Platine im Stecker gespeichert und werden vom TPC ForceMaster erkannt.
- Mittels des Einspannzapfen kann der Sensor in der Stößelbohrung der Presse befestigt werden.
- Das Werkzeug wird in der Aufnahmebohrung des Sensors aufgenommen und mit einer Inbus-Schraube im Quergewinde befestigt.

Gesamter Messfehler: $< \pm 1 \% \text{ v.E.}$

Maximale statische Gebrauchskraft: ca. 120% der Nennkraft Schutzart: nach EN 60529: IP54

Durchmesser: 50 mm Höhe ohne Einspannzapfen: 50 mm Einspannzapfendurchmesser: 10^{e7} x 21 mm Sensorbohrung: (Durchmesser x Tiefe): 10^{H7} x 25 mm

Der Sensor sollte querkraftfrei belastet werden.

Potentiometer

Linearitätsabweichung: ab 0,1 % v.E.
Auflösung: 0,01 mm
Schutzart nach EN 60529: IP 40

Nachrüstsatz für Potentiometer

Bestehende Handhebelpressen können mit einem Nachrüstsatz zum Anbau des Potentiometers nachgerüstet werden. Eine Zeichnung mit dem Bohrbild wird mitgeliefert.

Messbereiche	Max. Überlast
0 - 100 N	1 kN
0 - 250 N	2,5 kN
0 - 0,5 kN	5 kN
0 - 1,0 kN	10 kN
0 - 2,5 kN	25 kN
0 - 5,0 kN	30 kN
0 - 10,0 kN	30 kN
0 - 25,0 kN	30 kN

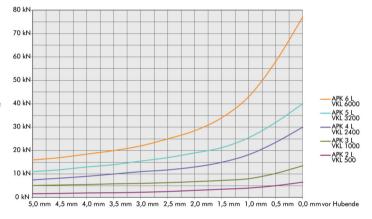
Kniehebel-Druckluftpressen

Die Extras

Kniehebel-Druckluftpressen APK*L und VKL Serie

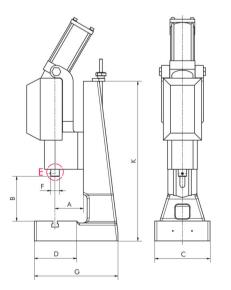
Die optimalen Übersetzungsverhältnisse des Kniehebels erzeugen große Kräfte am Hubende und sichern einen geringen Luftverbrauch. Der somit geringe Energieverbrauch macht Kniehebel-Druckluftpressen nicht nur in der Anschaffung, sondern auch langfristig zu einem kostengünstigen Produktionsmittel.

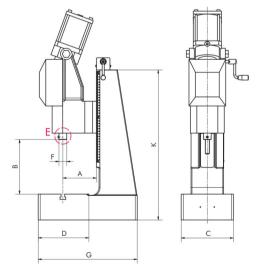
Alle Kniehebel-Druckluftpressen sind mit Standardsteuerungen des MPS-1 Typs oder mit Steuerungen nach Kundenspezifikation lieferbar.

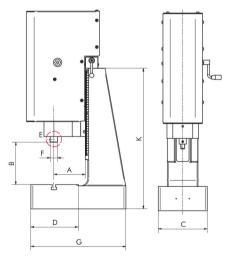

Vierkantstößel

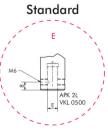
Weitere Qualitätsmerkmale:

- ▶ Werkseitig voreingestellter Druckpunkt
- ► Winkelgetriebe zur einfachen Höhenverstellung des Pressenkopfs
- ► Seitlich angebrachtes Maßband zum schnellen Reproduzieren von Einstellungen bei Werkzeugwechsel
- Praktisch wartungsfreie doppeltwirkende Zylinder
- ▶ Geräuscharm: unter 75 dB

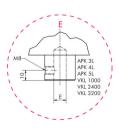


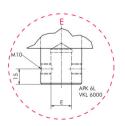


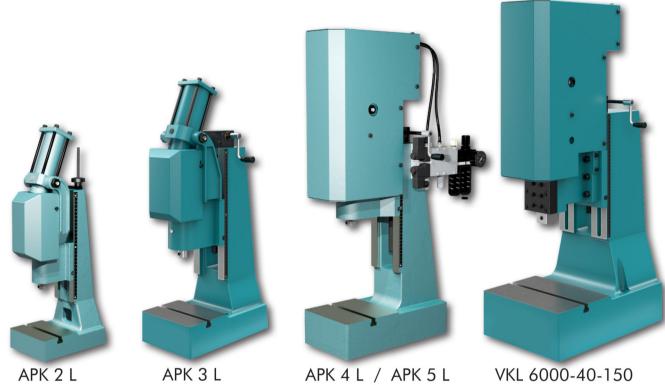



APK 3L VKL 1000-40-100

APK 4L VKL 2400 APK 5L VKL 3200 APK 6L VKL 6000







Тур			APK 2 L	APK 3 L	mit Rundstößel APK 4 L	APK 5 L	APK 6 L	
Druckkraft bei 6 bar		kN	5	10	24	32	60	
Arbeitshub		mm	35	40	40	40	40	
Ausladung	А	mm	80	100	130	130	150	
Arbeitshöhe	В	mm	80 - 265	110 - 280	175 - 330	175 - 330	87 - 310	
Arbeitshöhe mit DP	В	mm	65 - 250	95 - 265	-	-	-	
Tischgröße	CxD	mm	157 - 115	185 - 145	200 x 190	200 x 190	300 x 210	
Nutbreite ähnlich DIN 650		mm	10	12	14	14	14	
Stößelbohrung Ø x Tiefe	Е	mm	10H7 x 25	12H7 x 30	12H7 x 30	12H7 x 30	20H7 x 34	
Stößel Ø	F	mm	24	30	30	30	40	
Luftanschluss			G 1/4"	G 1/4"	G 3/8"	G 3/8"	G 3/8"	
Luftverbrauch/cm Zyl. Hub			0,26	0,41	1,05	1,05	1,65	
Platzbedarf	CxG	mm	157 x 237	185 x 320	200 x 385	200 x 385	300 x 455	
Ständerhöhe	K	mm	450	520	580	580	630	
Gewicht		kg	ca. 22	ca. 55	са. 95	са. 96	са. 140	

Extras (siehe Seite 8)	Bei Bestellung bitte angeben.					
Druckpunkt-Feineinstellung	DP	DP		-	-	

			mit Vierkantstößel							
Тур		VKL 0500-35-80	VKL 1000-40-100	VKL 2400-40-130	VKL 3200-40-130	VKL 6000-40-150				
Druckkraft bei 6 bar kN		5	10	24	32	60				
Arbeitshub		mm	35	40	40	40	40			
Ausladung	Α	mm	80	100	130	130	150			
Arbeitshöhe	В	mm	80 - 265	110 - 280	175 - 330	175 - 330	90 - 320			
Arbeitshöhe mit DP	В	mm	65 - 250	80 - 265	-	-	-			
Tischgröße	CxD	mm	157 x 115	185 x 145	200 x 190	200 x 190	300 x 210			
Nutbreite ähnlich DIN 650		mm	10	12	14	14	14			
Stößelbohrung Ø x Tiefe	Е	mm	10H7 x 25	12H7 x 30	12H7 x 30	12H7 x 30	20H7 x 34			
Stößelfläche	F	mm	25 x 25	31 x 31	31 x 31	31 x 31	41 x 41			
Luftanschluss			G 1/4"	G 1/4"	G 3/8"	G 3/8"	G 3/8"			
Luftverbrauch/cm Zyl. Hub			0,26	0,41	1,05	1,05	1,65			
Platzbedarf	CxG	mm	157 x 237	185 x 320	200 x 385	200 x 385	300 x 455			
Ständerhöhe	K	mm	450	520	580	580	630			
Gewicht kg		ca. 22	ca. 55	ca. 95	ca. 96	са. 140				

Extras (siehe Seite 8)	Bei Bestellung bitte angeben.							
Druckpunkt-Feineinstellung	DP	DP	-	-	-			

XL-Kniehebel-Druckluftpressen

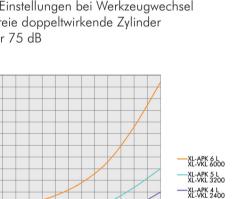
Die Extras

Kniehebel-Druckluftpressen XL-APK*L und XL-VKL Serie

Pressen mit XL Ausladung sind dafür konstruiert, große und sperrige Teile zu verarbeiten. Der Pressenständer besteht aus einer stabilen Schweißkonstruktion, die an Kundenwünsche angepasst werden kann.

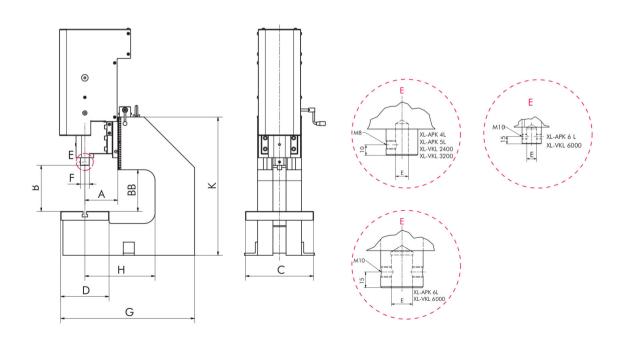
XL-Kniehebel-Druckluftpressen sind mit den Standardsteuerungen des MPS-1 Typs oder mit Steuerungen nach Kundenspezifikation lieferbar.

Weitere Qualitätsmerkmale:

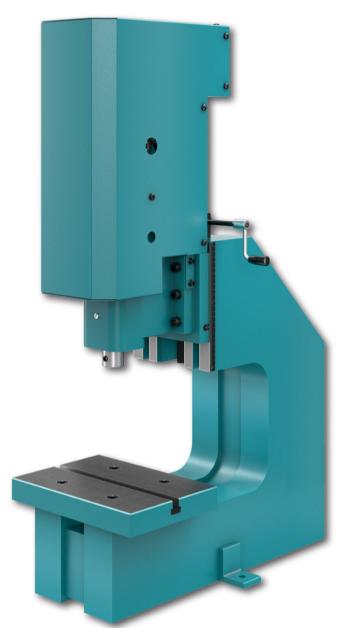

- ▶ Werkseitig voreingestellter Druckpunkt
- ▶ Winkelgetriebe zur einfachen Höhenverstellung des Pressenkopfs
- ▶ Seitlich angebrachtes Maßband zum schnellen Reproduzieren von Einstellungen bei Werkzeugwechsel
- Praktisch wartungsfreie doppeltwirkende Zylinder
- ▶ Geräuscharm: unter 75 dB

80 kN

60 kN 50 kN


40 kN

10 kN



5,0 mm 4,5 mm 4,0 mm 3,5 mm 3,0 mm 2,5 mm 2,0 mm 1,5 mm 1,0 mm 0,5 mm 0,0 mm vor Hubende

XL-APK 6 L

			mit Rundstößel				
Тур			XL-APK 4 L	XL- APK 5 L	XL-APK 6L		
Druckkraft bei 6 bar		kN	24	32	60		
Arbeitshub		mm	40	40	40		
Ausladung	Α	mm	130	130	150		
Ausladung C-Gestell	Н	mm	300	300	300		
Arbeitshöhe	В	mm	130 - 280	130 - 280	130 - 230		
Arbeitshöhe C-Gestell	BB	mm	158	158	190		
Tischgröße	CxD	mm	200 x 220	200 x 220	310 x 220		
Nutbreite ähnlich DIN 650		mm	14	14	16		
Stößelbohrung Ø x Tiefe	Е	mm	12H7 x 30	12H7 x 30	20H7 x 34		
Stößel Ø / Stößelfläche	F	mm	30	30	40		
Luftanschluss			G 3/8"	G 3/8"	G 3/8"		
Luftverbrauch/cm Zyl. Hub		1	1,05	1,05	1,65		
Platzbedarf	CxG	mm	200 x 560	200 x 560	320 x 610		
Ständerhöhe	K	mm	630	630	630		
Gewicht		kg	са. 149	са. 150	са. 250		

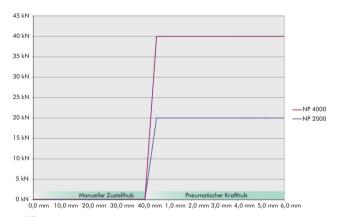
Ventil und Wartungseinheit r	our im Lie	eferumfa	ng mit Steuerung.	Die Ausführung	kann abweichen.

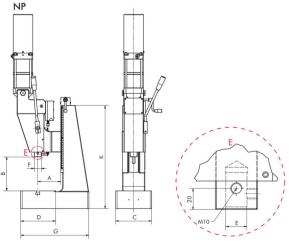
	mit Vierkantstößel	
XL-VKL 2400-40-300		XL-VKL 6000-40-300
24	32	60
40	40	40
130	130	150
300	300	300
130 - 280	130 - 280	130 - 230
158	158	190
200 x 220	200 x 220	310 x 220
14	14	16
12H7 x 30	12H7 x 30	20H7 x 34
31 x 31	31 x 31	41 x 41
G 3/8"	G 3/8"	G3/8"
1,05	1,05	1,65
200 x 560	200 x 560	320 x 610
630	630	630
ca. 149	ca. 150	са. 250

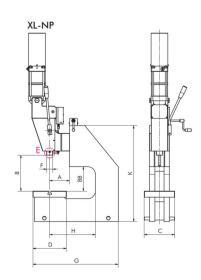
Die Extras

Handunterstützte Kniehebel-Druckluftpressen

Handunterstützte Kniehebelpressen kommen zum Einsatz, wenn bedingt durch die Besonderheit des Werkstücks anfangs nicht beide Hände durch eine Zweihandbedienung gebunden sein können und doch eine große Druckkraft am Ende des Arbeitshubs erreicht werden soll.


Mit den NP handunterstützten Druckluft-Kniehebelpressen kann hier sicher gearbeitet werden: Der Stößel wird über den Handhebel nach unten in die Krafthubposition gebracht und das Werkstück dann über die Handhebelkraft gehalten. Ein Sensor registriert diese Lage. Gleichzeitig kann das Werkstück losgelassen werden und mit der zweiten Hand ein Drucktaster gedrückt werden, der dann den Krafthub auslöst.


Der Krafthub kann nur ausgelöst werden, wenn beide Hände gebunden sind. So wird z.B. beim Loslassen des Handhebels der Stößel durch eine Sicherheitsmechanik angehoben und damit die Teilfreigabe für den Krafthub in der Steuerung zurückgenommen.


Die Länge des pneumatischen Krafthubs der NP handunterstützten Druckluft-Kniehebelpressen und somit die UT Position lässt sich über die serienmäßige Feineinstellung hochpräzise und stufenlos von 0 mm - 6 mm Hublänge einstellen. Wegen des speziellen Übersetzungsmechanismus steht der Krafthub konstant über die gesamte eingestellte Krafthublänge zur Verfügung.

Hubeinstellung

NP 2000

XL-NP 4000

_			ND 0000	ND 4000	W ND 0000	VI ND 4000
Тур			NP 2000	NP 4000	XL-NP 2000	XL-NP 4000
Druckkraft bei 6 bar		kN	20	40	20	40
manueller Zustellhub		mm	40	40	40	40
pneumatischer Krafthub		mm	0 - 6	0 - 6	0 - 6	0 - 6
Ausladung	А	mm	130	130	130	130
Ausladung C-Gestell	Н	mm	-	-	300	300
Arbeitshöhe	В	mm	58 - 325	58 - 325	125 - 265	125 - 265
Arbeitshöhe C-Gestell	BB	mm	-	-	158	158
Tischgröße	CxD	mm	200 x 190	200 x 190	200 x 220	200 x 220
Nutbreite ähnlich DIN 650		mm	14	14	14	14
Stößelbohrung Ø x Tiefe	Е	mm	20H7 x 25	20H7 x 25	20H7 x 25	20H7 x 25
Stößelfläche	F	mm	40 x 40	40 x 40	40 x 40	40 x 40
Luftanschluss			G 3/8"	G 3/8"	G 3/8"	G 3/8"
Luftverbrauch/cm Zyl. Hub		I	0,5	0,75	0,5	0,75
Platzbedarf	CxG	mm	200 x 385	200 x 385	200 x 560	200 x 560
Ständerhöhe	K	mm	580	580	630	630
Gewicht		kg	ca. 95	са. 96	са. 135	са. 136

Direktwirkende Druckluftpressen

DA-Serie

DA Pressen sind die konsequente Umsetzung moderner Pressentechnik für direktwirkende Druckluftpressen. Durch ihren modularen Aufbau können genau die für den Anwendungsfall benötigten Baumaße ausgewählt werden. Das Preis/Leistungsverhältnis wird so optimiert. Standard Hublängen von 40 mm bis 120 mm stehen in 20 mm Stufung zur Verfügung. Sonderlängen sind auf Anfrage lieferbar.

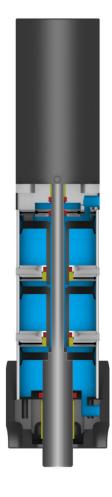
Direktwirkende Druckluftpressen erzeugen ihre Kraft konstant über die gesamte Hublänge. Alle direktwirkenden Druckluftpressen sind sowohl als Automationsbaustein oder mit Steuerungen für Einzelarbeitsplätze lieferbar.

Die Bearbeitung von Blechen, Leiterplatten oder anderen sperrigen Teilen verlangt eine größere Ausladung der Pressen. XL-DA Pressen mit 250 mm und 300 mm Ausladung ermöglichen die Bearbeitung auch dieser Werkstücke. Bei hohen Teilen, die mehr Raum nach oben verlangen, werden L-DA Pressen mit bis zu 350 mm Arbeitshöhe eingesetzt. Für Maße, die außerhalb des Standards liegen, können Pressen mit Ständern in Schweißkonstruktion nach Ihren Vorgaben gefertigt werden.

DA Pressen sind praktisch wartungsfrei, da alle beweglichen Teile gelagert sind. Die Zylinder sind vorgefettet und deshalb für ölfreien Betrieb geeignet.

Qualitätsmerkmale:

- ► Verdrehgesicherter, hartverchromter in Teflonbuchsen geführter Stößel
- ▶ Einfache Höhenverstellung des Pressenkopfs über eine Gewindespindel und Winkelgetriebe
- ▶ Seitlich angebrachtes Maßband zum schnellen Reproduzieren von Einstellungen bei Werkzeugwechsel
- Praktisch wartungsfreie doppeltwirkende Zylinder
- ► Zustellbare Endlagendämpfung des Zylinders
- ▶ Geräuscharm: unter 75 dB


Sensoren sind nicht im Lieferumfang enthalten

Hubeinstellung bei DA Pressen

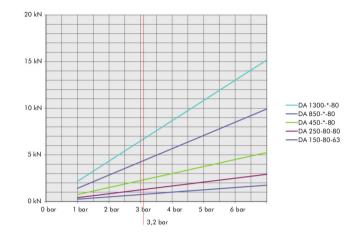
DA Pressen sind serienmäßig mit einem innovativen, präzisen und leicht zu handhabenden System ausgerüstet, das genaue Hubeinstellungen ermöglicht und den Stößel gegen Verdrehen sichert.

Funktion:

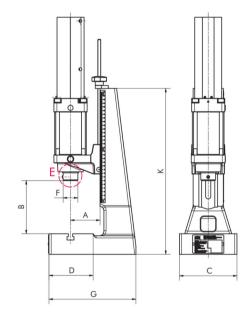
- Die Einpresstiefe kann auf 0,01 mm Ablesegenauigkeit über maximal 80 mm Hublänge mit der Skalenmutter eingestellt werden. Die Hublänge lässt sich über die seitliche Skala und den Nonius auf der Skalenmutter ablesen.
- Die Positionsabfrage des Stößels ist mit Reed-Kontakten möglich, die auf die serienmäßige Skala aufgeschoben werden.
- Die Sensoren müssen bei einer Hublängenverstellung nicht neu eingestellt werden, da die Magnete der Hublängenregulierung immer in die gleichen Endlagen fahren.

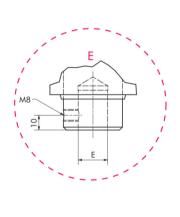
Tandemzylinder

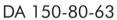
Für größere Kräfte wird die energiegünstige Tandemzylinder-Bauweise eingesetzt. Mehrere Pneumatikzylinder werden hintereinander geschaltet und so die Kraft des Zylinders entsprechend vervielfacht. Der Luftverbrauch wird optimiert, weil der Rückhub nur über eine Zylinderkammer erfolgt. Da die Luftführung innerhalb des Pneumatik-Zylinders stattfindet, kann die Presse nur über zwei Luftanschlüsse betrieben werden.


Direktwirkende Druckluftpressen •

Die Extras





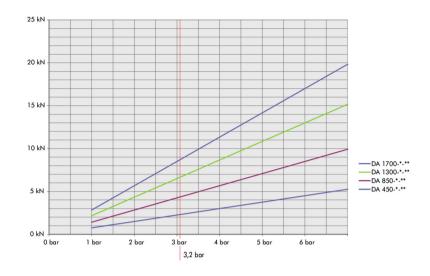


DA 250-80-80

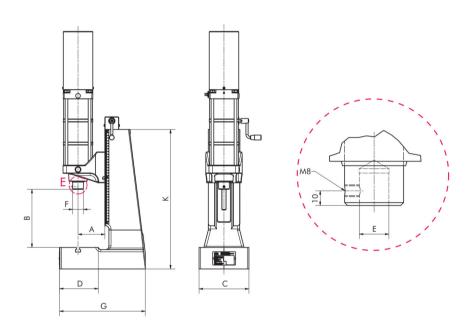
Тур		DA 150-80-63	DA 250-80-80	L-DA 250-80-80	DA 450-*-80	L-DA 450-*-80	DA 850-*-80	L-DA 850-*-80	L-DA 1300-*-80	
Druckkraft bei 6 bar		kN	1,5	2,5	2,5	4,5	4,5	8,5	8,5	13
Arbeitshub max.*		mm	80	80	80	40/60/80/ 100/120	40/60/80/ 100/120	40/60/80/ 100/120	40/60/80/ 100/120	40/60/80/ 100/120
Ausladung	А	mm	63	80	80	80	80	80	80	80
Arbeitshöhe	В	mm	40 - 215	70 - 280	65 - 390	58 - 243	65 - 350	58 - 243	65 - 350	65 - 350
Tischgröße	CxD	mm	100 x 65	157 x 115	157 x 115	157 x 115	157 x 115	157 x 115	157 x 115	157 x 115
Nutbreite ähnlich DIN 650		mm	10	12	12	12	12	12	12	12
Stößelbohrung Ø x Tiefe	Е	mm	16H7 x 25	20H7 x 25	20H7 x 25	20H7 x 25	20H7 x 25	20H7 x 25	20H7 x 25	20H7 x 25
Stößel Ø	F	mm	30	40	40	40	40	40	40	40
Luftanschluss			G 1/4"	G 1/4"	G 1/4"	G 3/8"				
Luftverbrauch/cm Zyl. Hub		1	0,2	0,3	0,3	1,0	1,0	1,5	1,5	2,1
Platzbedarf	CxG	mm	110 x164	157 x 237	155 x 280	155 x 237	156 x 275	155 x 237	156 x 275	156 x 275
Ständerhöhe	K	mm	355	450	570	450	570	450	570	570
Gewicht		kg	ca. 11,5	ca. 25	са. 31	ca. 28	са. 34	са. 31	са. 37	са. 40

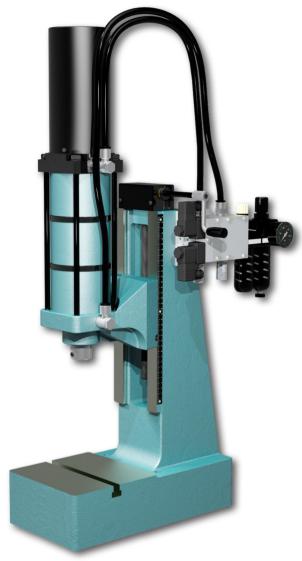
Extras (siehe Seite 8)	Bei Bestellung bitte angeben.							
Tischbohrung 12 ^{H7}	ТВ	TB	ТВ	ТВ	ТВ	ТВ	ТВ	TB

^{*} Bei Bestellung Hublänge angeben.


Direktwirkende Druckluftpressen •

Die Extras





DA 850-40-100

DA 1300-40-130

DA 450-*130

4,5

Тур			DA 450-*-100	DA 850-*-100	DA 1300-*-100	DA 1700-*-100
Druckkraft bei 6 bar		kN	4,5	8,5	13,0	17,0
Arbeitshub max.*		mm	40/60/80/ 100/120	40/60/80/ 100/120	40/60/80/ 100/120	40/60/80/ 100/120
Ausladung	Α	mm	100	100	100	100
Arbeitshöhe	В	mm	60 - 285	60 - 285	60 - 285	60 - 285
Tischgröße	CxD	mm	185 x 145	185 x 145	185 x 145	185 x 145
Nutbreite ähnlich DIN 650		mm	12	12	12	12
Stößelbohrung Ø x Tiefe	Е	mm	20H7 x 25	20H7 x 25	20H7 x 25	20H7 x 25
Stößel Ø	F	mm	40	40	40	40
Luftanschluss			G 3/8"	G 3/8"	G 3/8"	G 3/8"
Luftverbrauch/cm Zyl. Hub		1	1,0	1,5	2,1	2,6
Platzbedarf	CxG	mm	185 x 320	185 x 320	185 x 320	185 x 320
Ständerhöhe	K	mm	520	520	520	520
Gewicht		kg	ca. 62	ca. 65	са. 68	ca. 71

40/60/80/	40/60/80/	40/60/80/	40/60/80/
100/120	100/120	100/120	100/120
130	130	130	130
70 - 325	70 - 325	70 - 325	70 - 325
200 x 190	200 x 190	200 x 190	200 x 190
14	14	14	14
20H7 x 25	20H7 x 25	20H7 x 25	20H7 x 25
40	40	40	40
G 3/8"	G 3/8"	G 3/8"	G 3/8"
1,0	1,5	2,1	2,6
200 x 385	200 x 385	200 x 385	200 x 385
580	580	580	580
ca. 77	ca. 80	ca. 83	ca. 86

DA 850-*-130

8,5

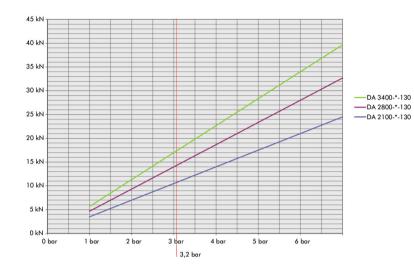
DA 1300-*-130

13,0

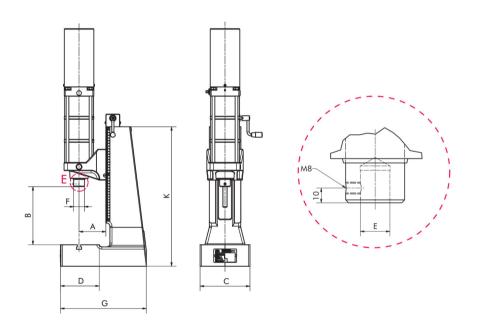
DA 1700-*-130

17,0

^{*} Bei Bestellung Hublänge angeben.


Direktwirkende Druckluftpressen •

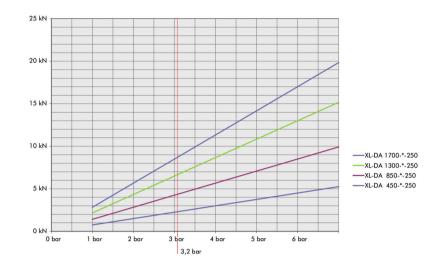
Die Extras



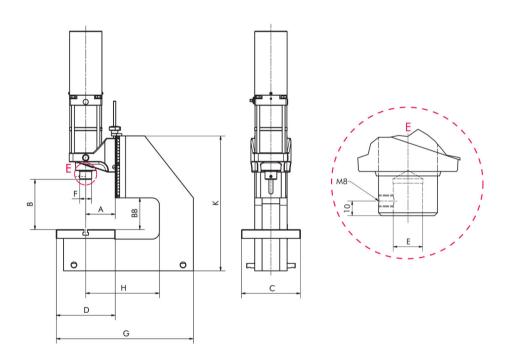
DA 3400-40-130

Тур			DA 2100-*-130	DA 2800-*130	DA 3400-*-130
Druckkraft bei 6 bar		kN	21,0	28,0	34,0
Arbeitshub max.*		mm	40/60/80/100/120	40/60/80/100/120	40/60/80/100/120
Ausladung	Α	mm	130	130	130
Arbeitshöhe	В	mm	75 - 330	75 - 330	75 - 330
Tischgröße	CxD	mm	200 x 190	200 x 190	200 x 190
Nutbreite ähnlich DIN 650		mm	14	14	14
Stößelbohrung Ø x Tiefe	Е	mm	20H7 x 25	20H7 x 25	20H7 x 25
Stößel Ø	F	mm	40	40	40
Luftanschluss			G 3/8"	G 3/8"	G 3/8"
Luftverbrauch/cm Zyl. Hub		I	3,0	3,7	4,5
Platzbedarf	CxG	mm	200 x 385	200 x 385	200 x 385
Ständerhöhe	K	mm	580	580	580
Gewicht		kg	ca. 92	ca. 99	ca. 105

^{*} Bei Bestellung Hublänge angeben.


Direktwirkende Druckluftpressen •

Die Extras

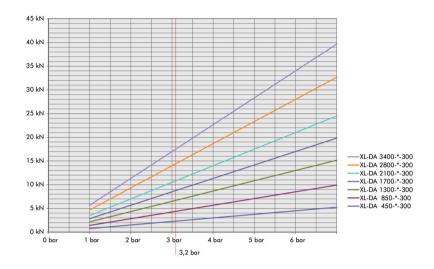


XL- Direktwirkende Druckluftpressen DA-Serie mit Rundstößel, mit 250 mm Ausladung

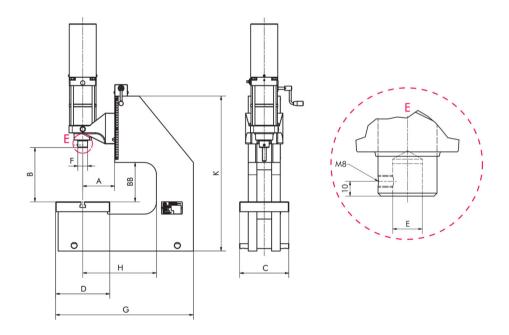
XL-DA 1300-40-250

Тур			XL-DA 450-*-250	XL-DA 850-*-250	XL-DA 1300-*-250	XL-DA 1700-*-250
Druckkraft bei 6 bar		kN	4,5	8,5	13,0	17,0
Arbeitshub max.*		mm	40/60/80/100/120	40/60/80/100/120	40/60/80/100/120	40/60/80/100/120
Ausladung	А	mm	100	100	100	100
Ausladung C-Gestell	Н	mm	250	250	250	250
Arbeitshöhe	В	mm	75 - 175	75 - 175	75 - 175	75 - 175
Arbeitshöhe C-Gestell	ВВ	mm	100	100	100	100
Tischgröße	CxD	mm	200 x 200	200 x 200	200 x 200	200 x 200
Nutbreite ähnlich DIN 650		mm	12	12	12	12
Stößelbohrung Ø x Tiefe	Е	mm	20 H7 x 25			
Stößel Ø	F	mm	40	40	40	40
Luftanschluss			G 3/8"	G 3/8"	G 3/8"	G 3/8"
Luftverbrauch/cm Zyl. Hub		I	1,0	1,5	2,1	2,6
Platzbedarf	CxG	mm	200 x 465	200 x 465	200 x 465	200 x 465
Ständerhöhe	K	mm	465	465	465	465
Gewicht		kg	ca. 57	ca. 60	ca. 63	ca. 66

^{*} Bei Bestellung Hublänge angeben.


Direktwirkende Druckluftpressen •

Die Extras



XL- Direktwirkende Druckluftpressen DA-Serie mit Rundstößel, mit 300 mm Ausladung

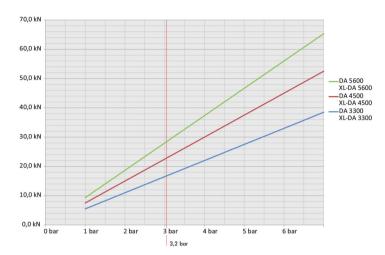
XL-DA 2800-40-300

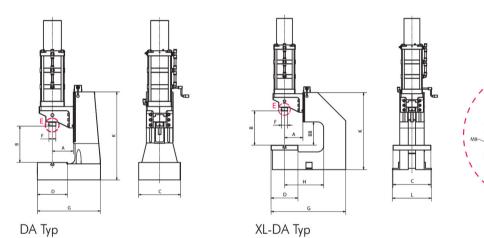
Тур			XL-DA 450-*-300	XL-DA 850-*-300	XL-DA 1300-*-300	XL-DA 1700-*-300	XL-DA 2100-*-300	XL-DA 2800-*-300	XL-DA 3400-*-300
Druckkraft bei 6 bar		kN	4,5	8,5	13,0	17,0	21,0	28,0	34,0
Arbeitshub max.*		mm	40/60/80/100/120	40/60/80/100/120	40/60/80/100/120	40/60/80/100/120	40/60/80/100/120	40/60/80/100/120	40/60/80/100/120
Ausladung	Α	mm	130	130	130	130	130	130	130
Ausladung C-Gestell	Н	mm	300	300	300	300	300	300	300
Arbeitshöhe	В	mm	140 - 275	140 - 275	140 - 275	140 - 275	130 - 275	130 - 275	130 - 275
Arbeitshöhe C-Gestell	ВВ	mm	158	158	158	158	158	158	158
Tischgröße	CxD	mm	200 x 220						
Nutbreite ähnlich DIN 650		mm	14	14	14	14	14	14	14
Stößelbohrung Ø x Tiefe	Е	mm	20 H7 x 25						
Stößel Ø	F	mm	40	40	40	40	40	40	40
Luftanschluss			G 3/8"						
Luftverbrauch/cm Zyl. Hub		1	1,0	1,5	2,1	2,6	3,0	3,7	4,5
Platzbedarf	CxG	mm	200 x 560						
Ständerhöhe	K	mm	630	630	630	630	630	630	630
Gewicht		kg	са. 135	са. 138	са. 141	са. 144	са. 141	са. 158	ca. 164

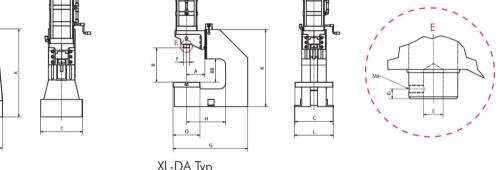
^{*} Bei Bestellung Hublänge angeben.

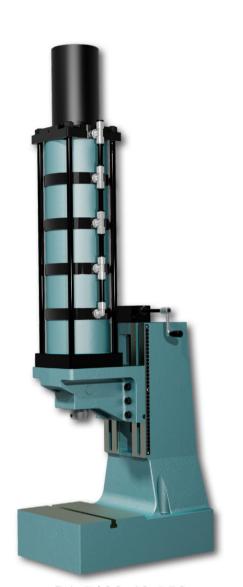
Direktwirkende Druckluftpressen •

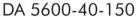
Die Extras

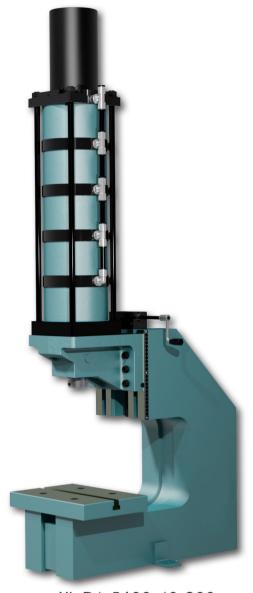












DA Serie mit Rundstößel und 150 mm Ausladung XL-DA Serie mit Rundstößel und 300 mm Ausladung

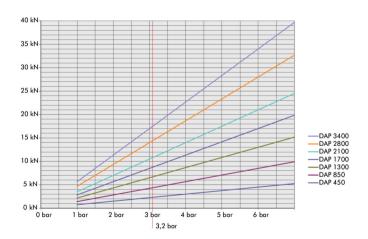
XL-DA 5600-40-300

Тур			DA 3300-*-150	DA 4500-*-150	DA 5600-*-150	XL-DA 3300-*-300	XL-DA 4500-*-300	XL-DA 5600-*-300
Druckkraft bei 6 bar		kN	33	45	56	33	45	56
Arbeitshub max.*		mm	40/60/80/100/120	40/60/80/100/120	40/60/80/100/120	40/60/80/100/120	40/60/80/100/120	40/60/80/100/120
Ausladung	Α	mm	150	150	150	150	150	150
Ausladung C-Gestell	Н	mm				300	300	300
Arbeitshöhe	В	mm	155 -365	155 -365	155 -365	195 - 290	195 - 290	195 - 290
Arbeitshöhe C-Gestell	BB	mm				190	190	190
Tischgröße	CxD	mm	300 x 210	300 x 210	300 x 210	310 x 220	310 x 220	310 x 220
Nutbreite ähnlich DIN 650		mm	14	14	14	16	16	16
Stößelbohrung Ø x Tiefe	Е	mm	20H7 x 25					
Stößel Ø	F	mm	50	50	50	50	50	50
Luftanschluss			G 1/2"					
Luftverbrauch/cm Zyl. Hub			5,2	6,5	7,9	5,2	6,5	7,9
Platzbedarf	CxG	mm	300 x 455	300 x 455	300 x 455	320 x 610	320 x 610	320 x 610
Ständerhöhe	K	mm	630	630	630	630	630	630
Gewicht		kg	227	233	239	300	306	312

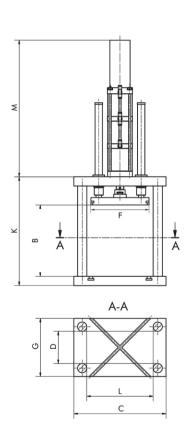
^{*} Bei Bestellung Hublänge angeben.

DAP Portalpressen

Die Extras



Die DAP Portalpresse setzt sich aus Standardkomponenten zusammen: dem DAF Pressenzylinder und dem Portal Gestell mit Stößelplatte. Die eingesetzten Zylinder erzeugen ihre Kraft konstant über die gesamte Hublänge. DAP Portalpressen sind sowohl als Automationsbaustein oder mit Steuerungen des Typs MPS-1 und der Prozessüberwachung TPC-MIDI lieferbar.

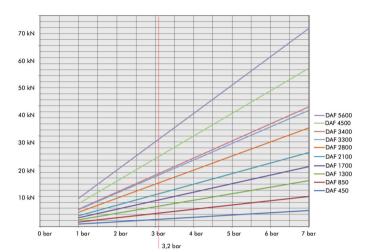

Qualitätsmerkmale

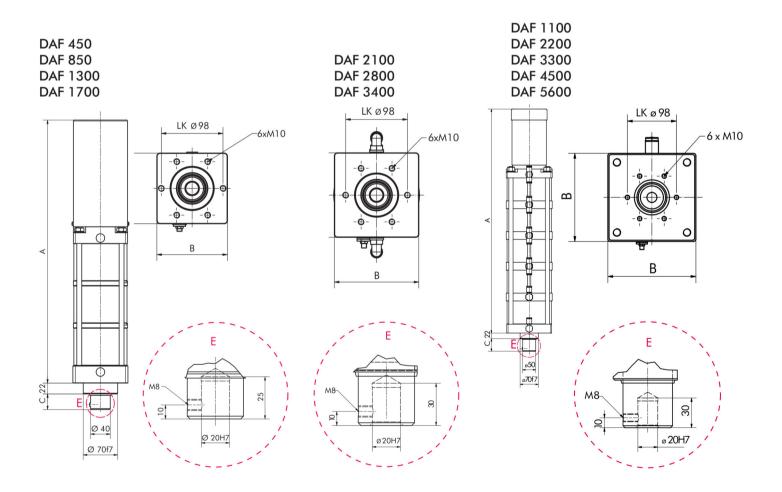
- ▶ Großes Kraftspektrum von 4,5 kN bis 34 kN
- ▶ Stabile Konstruktion
- Mit zwei Säulen verdrehgesicherte und geführte Stößelplatte
- ▶ Stößelplatte erlaubt flächigen Druck
- Kreuznuten zur sicheren Aufnahme von Werkzeugen
- ▶ Großer Einbauraum
- Arbeitshöhe mit Distanzstücken komplett ausnützbar
- Auf Wunsch ist das Pressenportal auch in anderen Abmessungen lieferbar. Bitte Maße L, D und B angeben

Тур			DAP 450-80	DAP 850-80	DAP 1300-80	DAP 1700-80	DAP 2100-80	DAP 2800-80	DAP 3400-80
Druckkraft bei 6 bar		kN	4,5	8,5	13	17	21	28	34
Rückzugskraft		kN	4	4	4	4	20	27	33
Arbeitshub max.		mm	80	80	80	80	80	80	80
Stößelplattenfläche	F	mm	315 x 315	315 x 315	315 x 315	315 x 315	315 x 315	315 x 315	315 x 315
Arbeitshöhe max.	В	mm	387	387	387	387	387	387	387
Arbeitsfläche	FxG	mm	360 x 175	360 x 175	360 x 175	360 x 175	360 x 175	360 x 175	360 x 175
Nurbreite ähnlich DIN 650		mm	14	14	14	14	14	14	14
Luftanschluss			G3/8"	G3/8"	G3/8"	G3/8"	G3/8"	G3/8"	G3/8"
Luftverbrauch pro 10 mm Hub		1	1,0	1,5	2,1	2,6	3,0	3,7	4,5
Platzbedarf	CxG	mm	500 x 315	500 x 315	500 x 315	500 x 315	500 x 315	500 x 315	500 x 315
Gestellhöhe	K	mm	590	590	590	590	590	590	590
Zylinderhöhe	М	mm	443	569	695	821	741	889	1037
Gewicht		kg	197	200	203	206	212	219	226

DAF Direktwirkende Pressenzylinder

Die Extras





DAF direktwirkende Pressenzylinder mit Flansch wurden für den flexiblen Einsatz in Sondermaschinen konstruiert. DAF Pressenzylinder sind mit allen Vorteilen von modernen Druckluftpressen standardmäßig ausgerüstet:

- ▶ Stufenlose Einstellung der Hublänge
- ▶ Zustellbare Endlagendämpfung
- ▶ Aufnahmebohrung für Werkzeuge
- ▶ Einfach zu automatisieren

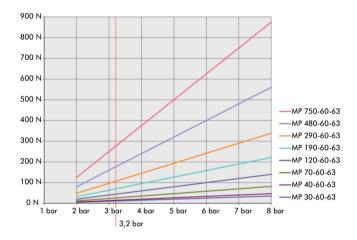
Тур		DAF 450	DAF 850	DAF 1300	DAF 1700
Druckkraft bei 6 bar	kN	4,5	8,5	13	17
Rückzugskraft bei 6 bar	kN	4	4	4	4
Hub max.*	mm	40/60/80/100/120	40/60/80/100/120	40/60/80/100/120	40/60/80/100/120
A bei 40 mm Hub	mm	363	449	535	621
Zuschlag/20 mm mehr Hub	mm	20	40	60	80
В	mm	112	112	112	112
С	mm	32	32	32	32

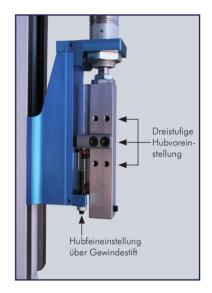
Тур		DAF 2100	DAF 2800	DAF 3400
Druckkraft bei 6 bar	kN	21	28	34
Rückzugskraft bei 6 bar	kN	20	27	33
Hub max.*	mm	40/60/80/100/120	40/60/80/100/120	40/60/80/100/120
A bei 40 mm Hub	mm	581	689	797
Zuschlag/20 mm mehr Hub	mm	60	80	100
В	mm	134	134	134
С	mm	38	38	38

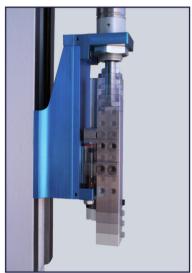
Тур		DAF 1100	DAF 2200	DAF 3300	DAF 4500	DAF 5600
Druckkraft bei 6 bar	kN	11	22	33	45	56
Rückzugskraft bei 6 bar	kN	10	10	10	10	10
Hub max.*	mm	40/60/80/100/120	40/60/80/100/120	40/60/80/100/120	40/60/80/100/120	40/60/80/100/120
A bei 40 mm Hub	mm	387	505	623	741	859
Zuschlag/20 mm mehr Hub	mm	20	40	60	80	100
В	mm	172	172	172	172	172
С	mm	48	48	48	48	48

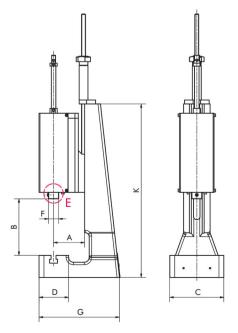
^{*} Bei Bestellung Hublänge angeben.

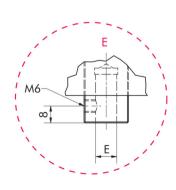
Die Extras






MicroPress® ist eine pneumatische Presse für niedere Druckkräfte mit einem stabilen Pressenständer. MicroPress® Typen sind ideal für Füge- und Formanwendungen, bei denen die Bauteile geringen Einpressdruck und präzise Hubtiefe verlangen. Wie zum Beispiel bei Anwendungen in der Medizintechnik, Elektronikfertigung und Feinmechanik.


Qualitätsmerkmale:

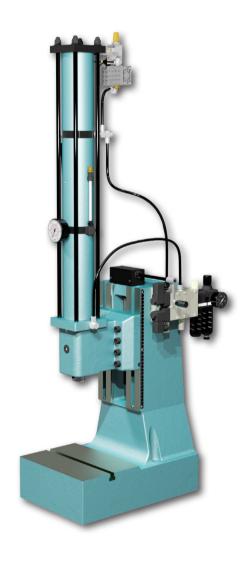

- Vierkantstößel
- ▶ Präzisionsführung des Stößels
- ▶ Einstellbare Hublänge
- ▶ Höhenverstellbarer Pressenkopf
- ▶ Praktisch wartungsfreier Zylinder
- Geräuscharm

MicroPress 190-60-63

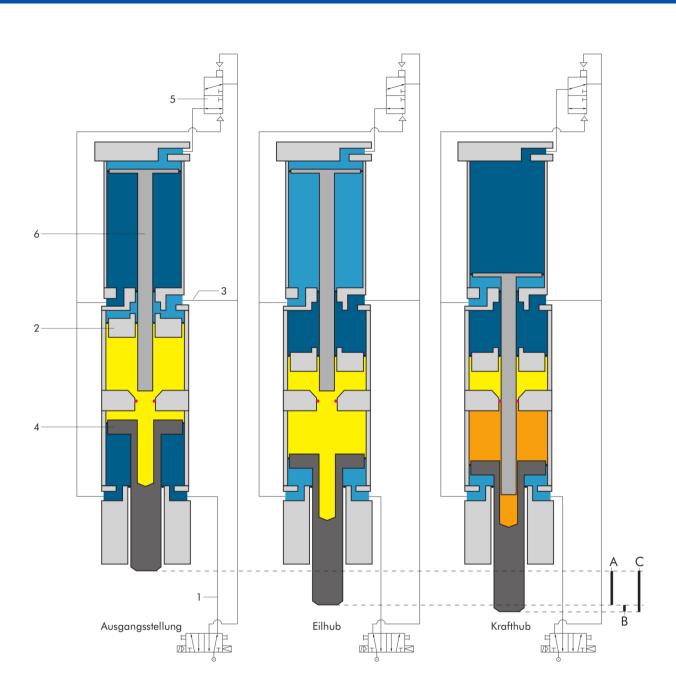
			MP 30-60-63	MP 40-60-63	MP 70-60-63	MP 120-60-63	MP 190-60-63	MP 290-60-63	MP 480-60-63	MP 750-60-63
Druckkraft bei 6 bar		Ν	30	40	70	120	190	290	480	750
Arbeitshub max.		mm	60	60	60	60	60	60	60	60
Ausladung	Α	mm	63	63	63	63	63	63	63	63
Arbeitshöhe	В	mm	43 - 208	43 - 208	43 - 208	43 - 208	43 - 208	43 - 208	43 - 208	43 - 208
Tischgröße	C x D	mm	100 x 65	100 x 65	100 x 65	100 x 65	100 x 65	100 x 65	100 x 65	100 x 65
Nutbreite ähnlich DIN 650		mm	10	10	10	10	10	10	10	10
Stößelbohrung Ø x Tiefe	Е	mm	10H7 x 25	10H7 x 25	10H7 x 25	10H7 x 25	10H7 x 25	10H7 x 25	10H7 x 25	10H7 x 25
Stößelfläche	F	mm	21 x 21	21 x 21	21 x 21	21 x 21	21 x 21	21 x 21	21 x 21	21 x 21
Luftanschluss			M5	M5	M5	M5	G ₈ "	G ₈ "	G ₈ "	G1/4
Luftverbrauch/60mm Hub		- 1	0,04	0,06	0,08	0,16	0,24	0,38	0,64	1,0
Platzbedarf	C x G	mm	110 x 164	110 x 164	110 x 164	110 x 164	110 x 164	110 x 164	110 x 164	110 x 164
Ständerhöhe	K	mm	355	355	355	355	355	355	355	355
Gewicht		kg	ca. 9,5	са. 10	са. 10	ca. 11	ca. 11	са. 12	са. 12	ca. 12

Extras (siehe Seite 8)	Bei Bestellung bitte	angeben.						
Tischbohrung 12H7	ТВ	TB	TB	TB	TB	TB	TB	TB

hydro-pneumatische Pressen


Hydro-pneumatische Pressen werden nur mit Druckluft angetrieben und schalten den hydraulischen Krafthub selbsttätig zu. Sie vereinen die Vorteile von pneumatischen und hydraulischen Pressen. Im pneumatisch angetriebenen Eilhub wird das Werkstück mit geringer Kraft schnell angefahren. Der hydraulische Krafthub setzt dann bei Widerstand automatisch ein.

Deshalb wird insbesondere bei diesen Modellen die eingesetzte Energie am wirtschaftlichsten genutzt. Die Funktion von hydro-pneumatischen Pressen wird auf der folgenden Seite beschrieben. Da hydro-pneumatische Pressen kein Hydraulikaggregat benötigen, lassen sie sich auch auf engstem Raum einsetzen. Alle hydro-pneumatischen Pressen sind mit den Standardsteuerungen oder mit Steuerungen nach Kundenspezifikation lieferbar.


Die Bearbeitung von Blechen, Leiterplatten oder anderen sperrigen Teilen verlangt eine größere Ausladung der Pressen. XL-HP Pressen mit 300 mm Ausladung ermöglichen die Bearbeitung auch dieser Teile. Für Maße, die außerhalb des Standards liegen, können Pressen mit Ständern in Schweißkonstruktion nach Ihren Wünschen gefertigt werden.

Qualitätsmerkmale:

- ▶ Verdrehgesicherter, gehärteter Stößel
- ▶ Lange, gehonte Stößelführung für höchste Präzision
- Zwei Krafthublängen stehen als Standard zur Verfügung
- ▶ Einfache Höhenverstellung des Pressenkopfs über eine Gewindespindel und Winkelgetriebe
- Seitlich angebrachtes Maßband zum schnellen Reproduzieren von Einstellungen bei Werkzeugwechsel
- ▶ Geräuscharm: unter 75 dB

Funktionsbeschreibung:

Ausgangsstellung:

Druckluftleitung (1) ist mit Druckluft beaufschlagt, das restliche System ist druckfrei.

Eilhub (A):

Der Eilhubkolben (2) wird über den Druckluftanschluss (3) beaufschlagt. Der Kolben fährt aus und drückt über das ÖL den Krafthubkolben (4) mit großer Geschwindigkeit nach unten bis auf das Werkstück.

Öl ohne Druck □ Öl unter Druck □ Luft ohne Druck □ Luft unter Druck

A = Eilhub B = Krafthub C = Gesamthub

Krafthub (B):

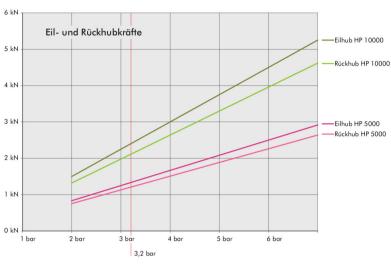
Die Umsteuereinheit (5) schaltet jetzt selbsttätig um, der Plunger (6) wird mit Druckluft beaufschlagt, fährt aus und schließt die Ölkammer. Die Kraftübersetzung findet statt. Der Stößel (4) fährt mit verminderter Geschwindigkeit und erhöhter Kraft im Krafthub aus.

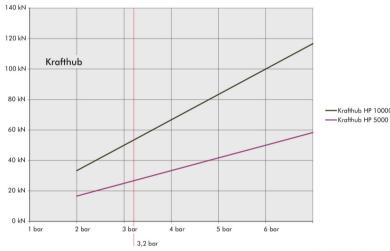
Rückhub (C):

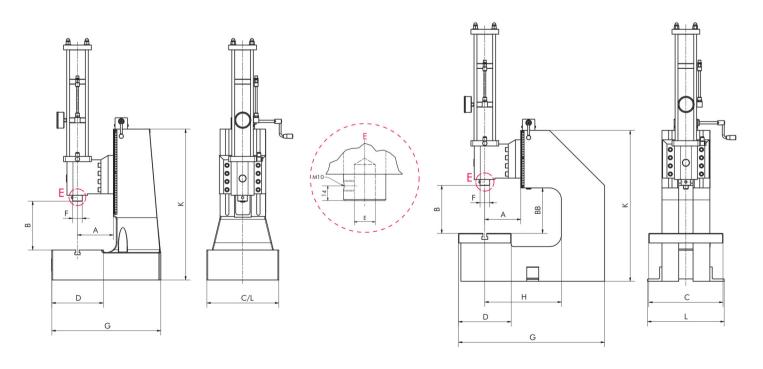
Systemumkehr, alle Kolben fahren gleichzeitig mit pneumatischer Kraft zurück.

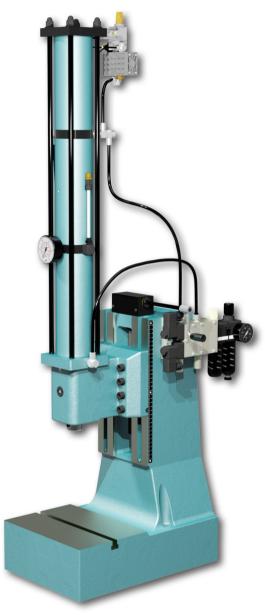
hydro-pneumatische Pressen

Die Extras









HP-Serie XL-HP-Serie

XL-HP 10000

Тур			HP 5.000 HV	HP 10.000 HV	XL-HP 5.000 HV	XL-HP 10.000 HV
Druckkraft bei 6 bar		kN	42	100	42	100
Arbeitshub		mm	50	50	50	50
davon Krafthub*		mm	5/10	5/10	5/10	5/10
Eilhubkraft bei 6 bar		kN	2,5	4,5	2,5	4,5
Rückhubkraft bei 6 bar		kN	1,7	4,1	1,7	4,1
Ausladung	Α	mm	150	150	150	150
Ausladung C-Gestell	Н	mm	-	-	300	300
Arbeitshöhe	В	mm	119 - 320	117 - 312	145 - 235	200 - 270
Arbeitshöhe C-Gestell	BB	mm	-	-	190	190
Tischgröße	CxD	mm	300 x 210	310 x 220	310 x 220	310 x 220
Nutbreite ähnlich DIN 650		mm	14	14	16	16
Stößelbohrung Ø x Tiefe	Е	mm	20H7 x 34	20H7 x 34	20H7 x 34	20H7 x 34
Stößel Ø	F	mm	40	40	40	40
Luftanschluss			G 1/4"	G 1/4"	G 1/4"	G 1/4"
Platzbedarf	LxG	mm	300 x 455	310 x 500	320 x 610	320 x 610
Ständerhöhe	K	mm	630	650	630	630
Gewicht		kg	ca. 163	ca. 287	ca. 241	ca. 311

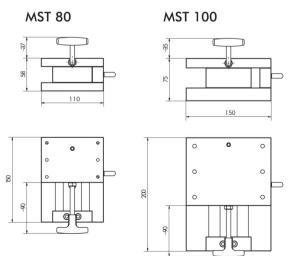
^{*} Bei Bestellung Hublänge angeben.

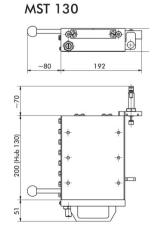
Schiebetische

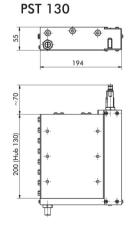
pneumatische und manuelle Schiebetische erleichtern sichtern Einlegearbeiten und erhöhen somit die Wirtschaftlichkeit von Montageprozessen.

Die Vorteile:

- ▶ Das Einlegen erfolgt außerhalb des Gefährdungsbereichs
- Vormontage von Teilen ist ohne räumliche Behinderung durch die Presse möglich. Dies ist besonders vorteilhaft, wenn die maximale Arbeitshöhe der Presse voll ausgenutzt werden muss.
- ▶ Vielseitige Einsatzmöglichkeiten für Automatisierungs- und Zustellaufgaben
- ▶ Präzises Positionieren von Werkstücken


Qualitätsmerkmale im Überblick


	MST 80	MST 100	MST 130	PST 130
Hand-Schiebetisch	•	•	•	
Pneumatischer Schiebetisch				•
Teflon Gleitführung	•	•		
Gehärtete, geschliffene Führungssäulen	•	•		
Hochbelastbare, präzise Kreuzrollenführung			•	•
Führung spielfrei einstellbar			•	•
Einbau quer oder längs	•	•	•	•
Beidseitige Endlagendämpfung			•	•
Selbsthaltend in der Endlage	•	•	•	•
Andere Hublänge auf Anfrage	•	•		



MST 130

PST 130

Einbau Beispiele

EP 500 mit MST 80

DA Typ Presse mit PST 130 Einbau von vorne

Einbau von der Seite

Тур		MST 80	MST 100	MST 130	PST 130
Hub	mm	80	100	130	130
Belastbarkeit	kN	12	30	50	50
Geeignet für Pressen mit Ausladung	mm	63/80	80/100	100/130/150/250/300	100/130/150/250/300

2 Hand-Sicherheitssteuerung für pneumatische Pressen

Die MPS-1 Steuerungstypen entsprechen den Sicherheitsanforderungen, die gemäß der EG Maschinenrichtlinie 2006/42/EG und den Normen für die Sicherheit von pneumatischen Pressen angewendet werden müssen. Pressen können deshalb für Arbeitsplätze mit Handbestückung und offenen Werkzeugen verwendet werden. Die sowohl elektrisch als auch pneumatisch redundant aufgebaute Steuerung gibt Ihnen hier Sicherheit.

Alle Steuerungen sind grundsätzlich mit einem 5-stelligen, elektronischen Stückzähler ausgestattet.

MPS-1

Grundversion für den Zweihand Betrieb.

MPS-1 T

MPS-1 Steuerung erweitert um die Funktion Haltezeit. Wenn die Presse die Endlage erreicht hat, kann über ein Zeitglied eingestellt werden, wann der Rückhub erfolgen soll.


MPS-1 PST

Dieser MPS-1 Steuerungstyp wird verwendet, um zusätzlich zur Presse einen pneumatischen Schiebetisch mitanzusteuern. Der Lieferumfang beinhaltet auch die Funktion Haltezeit (siehe MPS-1 T)

MPS-1 TPC

MPS-1 Steuerung zusätzlich mit dem Modul zur Kraft/Weg Überwachung TPC-MIDI.

TPC-MIDI Prozessüberwachung

Anwendungen:

Füge- und Montageprozesse mit Pressen müssen heute sicher und möglichst ohne nachträgliche Kontrolle durchgeführt werden. Vorgegebene Parameter, die den Einpressvorgang definieren, müssen beim Produzieren eingehalten werden. Nur so kann die Qualität und Sicherheit des hergestellten Produkts garantiert werden. Deshalb wird überall dort TPC-MIDI eingesetzt, wo gleichbleibende Fügeprozesse gefordert werden, deren Verlauf überprüft und gegebenenfalls mittels Software dokumentiert werden müssen.

TPC-MIDI überwacht den Einpressvorgang und vergleicht den tatsächlichen Verlauf mit den Vorgaben und bewertet ihn anschließend. Ausschussteile werden so sicher erkannt und können aussortiert werden.

TPC-MIDI kann sowohl zusammen mit Handhebelpressen als auch mit pneumatischen Pressen verwendet werden.

Bei pneumatischen Pressen wird die Steuerung MPS-1 TPC zusammen mit einer SPS-Ansteuerung, der die baumustergeprüften Zweihand-Sicherheitssteuerung MPS-1 übergeordnet ist, ausgeliefert.

TPC-MIDI steht aber auch als reiner Systembaustein zur Verfügung, wenn ein SPS-Umfeld, z.B. in einer Automation schon vorhanden ist.

Die Vorteile:

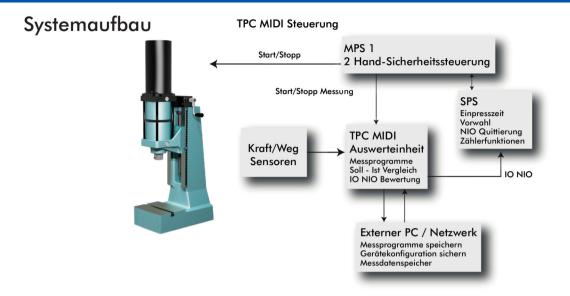
- ▶ Einpresszeit Vorwahl.
- ▶ TPC-MIDI lässt sich über die Folientastatur oder komfortabel über die PC Software programmieren.
- TPC-MIDI speichert 8 verschiedene Messprogramme im Gerät.
- ▶ 3 Fenster und eine Hüllkurve pro Programm möglich
- Moderne Kurvenbewertung über frei parametrierbare Fenster

 Kraftmessung direkt im Kraftverlauf mit speziell für Pressen entwickelten DMS Sensor.

▶ Kann über RS 485, Ethernet und optional über Profibus vernetzt werden.

Eindeutige IO / NIO Meldung

Bei IO Teilen leuchtet die Signalleuchte grün und die Presse ist zum nächsten Arbeitshub bereit.


NIO Teile werden von TPC-MIDI zuverlässig über einen Signalton und eine rote Signalleuchte gemeldet. Das Auslösen des nächsten Pressenhubs ist erst möglich, wenn der Fehler quittiert wurde.

Laptop nicht im Lieferumfang

DA 850-40-100 mit MPS-1 TPC

DMS Kraftsensoren für TPC MIDI

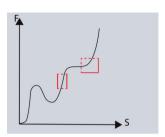
Der DMS Kraftsensor wird in der Stößelbohrung befestigt. In die Bohrung am anderen Ende des Sensors kann die Werkzeugaufnahme befestigt werden. Somit ist der Kraftsensor immer direkt im Kraftfluss zwischen Pressenstößel und Werkzeug.

Messbereich	Messwert- abweichung	Werkzeug- aufnahme
0 – 500 N	≤ ± 0,5% v.E.	10H7 x 24 mm
0 – 1 kN	≤ ± 0,5% v.E.	10H7 x 24 mm
0 – 2 kN	≤ ± 0,5% v.E.	10H7 x 24 mm
0 – 5 kN	≤ ± 2,0% v.E.	10H7 x 24 mm
0 – 10 kN	≤ ± 2,0% v.E.	10H7 x 24 mm
0 – 20 kN	≤ ± 1,0% v.E.	10H7 x 24 mm
0 – 50 kN	≤ ± 1,0% v.E.	10H7 x 24 mm
0 – 100 kN	≤ ± 1,0% v.E.	10H7 x 24 mm

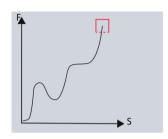
Falls nicht ausdrücklich anders gewünscht, wird der DMS Sensors entsprechend der maximalen Druckraft der verwendeten Presse ausgewählt.

Potentiometrische Wegmesser

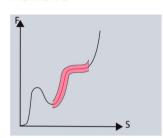
Die Wegmessung erfolgt potentiometrisch. Die Lebensdauer der Sensoren liegt bei 10⁸ Bewegungen.


Pressenhub	Auflösung	Linearitäts- Fehler
40 mm	0,025 mm	0,42%
60/80 mm	0,038 mm	0,41%
100 mm	0,050 mm	0,40%
120 mm	0,075 mm	0,40%

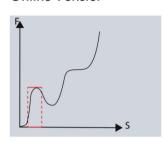
TPC-MIDI Prozessüberwachung


Überwachungsfenster

Durchlauffenster


Die Kraft/Weg Kurve muss das Fenster von der Eintrittszur Austrittseite wie definiert durchlaufen, ohne dass eine der anderen Fenstergrenzen verletzt wird. Ein- und Austrittseite sind frei wählbar.

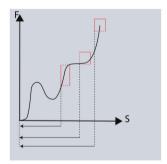
Blockfenster


Das Blockfenster überwacht die Endwerte des Einpressverlaufs. Die Kraft/Weg Kurve muss bei diesem Fenstertyp in die vorgegebene Eintrittsseite eintreten und darf das Fenster nicht mehr verlassen.

Hüllkurve

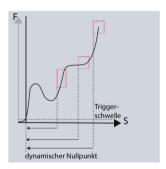
Die Messkurve muss sich durch die Hüllkurve ziehen und darf diese nicht verletzen. Die Hüllkurve wird über Teach-in eingelernt. Ihre X-Achsen Parameter und das Delta-Y, also der Toleranzbereich der Kraft, werden anschließend definiert.

Online-Fenster

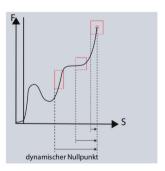


Mit diesem Fenster kann am Beginn des Einpressprozesses überwacht werden, ob Teile verkanten oder nicht korrekt einfädeln. Bei zu starke Kraftanstieg wird das Fenster nach oben verlassen und ein Echtzeitsignal erzeugt, das zum Prozessabbruch verwendet werden kann.

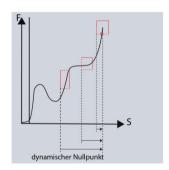
Die Bezugspunkte der Überwachungsfenster


Die Bezugspunkte der Überwachungsfenster auf der x-Achse können sowohl starr als auch dynamisch definiert werden.

Absolut


Bei wiederholgenauen Fügeteilen wird als Bezugspunkt der kalibrierte Nullpunkt des Wegsensors auf der x-Achse verwendet.

Trigger


Wenn der Fügeverlauf in sich gleich ist, aber der Fügebeginn eine große Abweichung auf der x-Achse aufweist, kann durch Setzen einer Trigger Schwelle auf der y-Achse, der Messbeginn definiert werden.

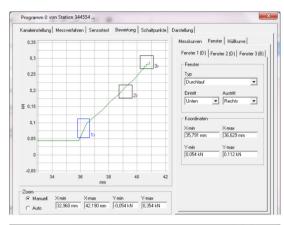
Endkraft

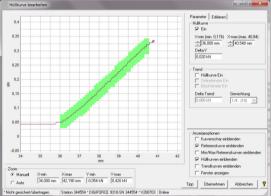
Falls eine Messung mit absoluten oder Trigger Bezug nicht sinnvoll ist, kann als Bezugspunkt die Position der Endkraft (Fmax) auf der x-Achse gewählt werden. Die Position der Bewertungsfenster auf der x-Achse bezieht sich dann rückwärts auf diesen dynamischen Nullpunkt.

Blockfenster

Falls die Endkraft einen großen Streubereich aufweist, kann der Bezug der Bewertungsfenster auch über den Eintritt der Kurve in das Blockfenster definiert werden. Alle Werte nach dem Erreichen des Blockfensters werden nicht mehr berücksichtigt. Die Position der Bewertungsfenster auf der x-Achse bezieht sich dann rückwärts auf diesen dynamischen Nullpunkt.

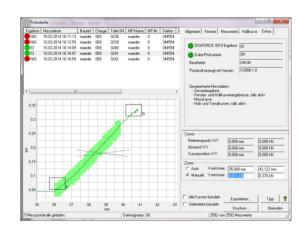
PC Software


TPC MIDI wird serienmäßig mit der Basis Version der Software ausgeliefert, mit der die Konfiguration von TPC Midi und Messprogramme eingerichtet und abgespeichert werden können.


Gerätekonfiguration:

- ► Einstellungen bzw. Teachin der Kraft und Weg Sensoren (X/Y Achse)
- Festlegen des Messverfahrens und der Bezugspunkte

Messprogramme:


- ▶ Erstellen und internes speichern von 8 Messprogrammen. Weitere Messprogramme können erstellt, gesichert und bei Bedarf wieder geladen werden.
- ▶ Einlesen von Kurvenscharen
- Erstellen der Überwachungsfenstern und der Hüllkurve
- ▶ Testläufe mit IO oder NIO Bewertung

Mit der lizenzpflichtigen Vollversion können zusätzlich die Produktionsdaten pro Einpressvorgang erfasst und protokolliert werden.

- Produktionsmodus
- Messdatenprotokollierung
- ▶ Eindeutiger Teilebezug
- Neben dem programmeigenen Format Export in ACII und Excel

Press & Tool Concept •

Press & Tool Concept steht für ein abgerundetes Pressen- und Werkzeugprogramm für die effiziente Fertigung, schwerpunktmäßig in der Blechbearbeitung in Kraftbereichen von 10 kN - 35 kN.

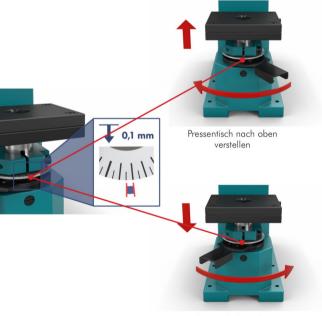
Qualitätsmerkmale:

Micro Adjust

Die präzise Höhenverstellung des Pressentischs vereinfacht das Einrichten der Press & Tool Concept Pressen und erhöht deren Einsatzmöglichkeiten. Die serienmäßige Skalenscheibe ermöglicht eine Ablesegenauigkeit von 0,1 mm.

Solid Frame

Solide Gussständer in C-Form von hoher Stabilität und geringer Auffederung bei Stanzvorgängen ermöglichen bei vielen Arbeitsverfahren den Einsatz kostengünstiger Freischnitt-Werkzeuge.



Öffnen der Klemmung

Quick Tool Change

Das standardisierte Werkzeugbefestigungssystem erlaubt, dass die verschiedenen Werkzeuge aus dem Press & Tool Concept mit wenigen Handgriffen schnell gewechselt werden können.

Pressentisch nach unten verstellen

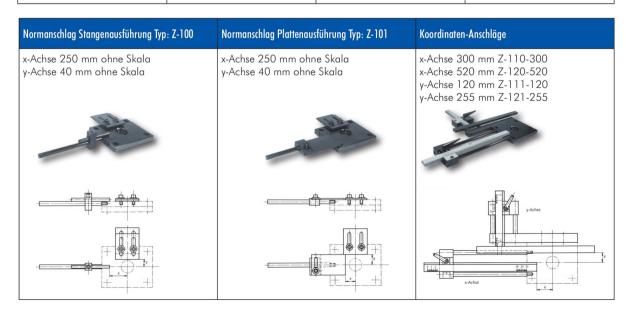
Position des Pressentischs fixieren

Werkzeugsystem

Basis Werkzeugsystem für Standard Anwendungen der Blechbearbeitung wie Stanzen, 90° Biegen, Radienstanzen etc.

Die Komponenten des Press & Tool Concept

Hand-Kniehebelpressen

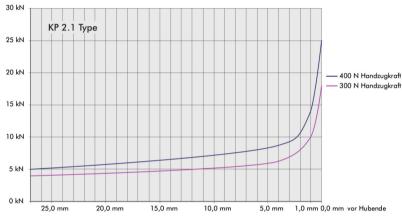


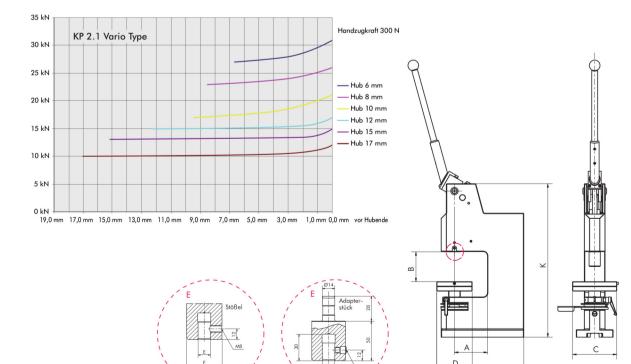
Druckluft-Kniehebelpressen

Werkzeugsystem

Stanz-Werkzeug	Bandschneide-Werkzeug	Winkel-Trenn-Werkzeug	Profilschienen-Stanz-Werkzeug mit 10 steckbaren Zentriereinsätzen
Profil-Trenn-Werkzeug	Biege-Werkzeug	Radien-Stanz-Werkzeug drehbar	Kombi-Eckstanz-Werkzeug
		<u>J</u>	

KP Hand-Kniehebelpressen •


Die Standard Kniehebelpresse des Press & Tool Concepts


Ideal zum Stanzen, Biegen, Montieren, Prägen, Pressen, Nieten, Richten, Kleben.

- ▶ Einfache Handhabung
- ▶ Werkseits eingestellte wiederholgenaue Endlage
- ▶ Das MICRO ADJUST System erlaubt schnelle und genaue Höhenverstellung des Pressentischs
- ▶ Ablesegenauigkeit 0,1 mm
- ► Fixierung durch Schnellspannhebel ohne zusätzliche Werkzeuge
- Ideal zusammen mit dem Werkzeugsystem
- ▶ Adapterstück im Lieferumfang

Montierter Abstreifbügel für KP 2.1 Modelle (Sonderzubehör)

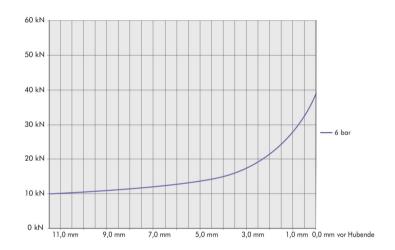
KP 2.1 W

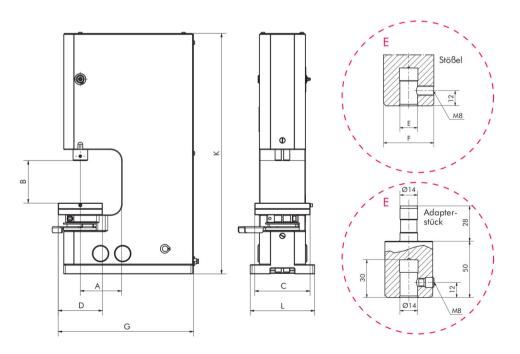
KP 2.1 W Vario

KD	2	1	NI	

KP 2.1 N Vario

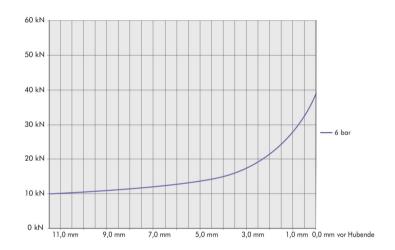
Тур			KP 2.1 N	KP 2.1 W	KP 2.1 N Vario	KP 2.1 W Vario
Druckkraft		kN	25	25	10 - 30	10 - 30
Arbeitshub		mm	27	27	6 - 17	6 - 17
Ausladung	Α	mm	112	275	112	275
Arbeitshöhe max.	В	mm	122	122	112	117
Verstellweg Tisch		mm	70	70	70	70
Tischgröße	DxC	mm	120 x 150	120 x 150	120 x 150	120 x 150
Stößelbohrung Ø x Tiefe	Е	mm	14H7 x 30	14H7 x 30	14H7 x 30	14H7 x 30
Stößel Ø	F	mm	40h7	40h7	40h7	40h7
Platzbedarf	CxG	mm	125 x 280	125 x 520	125 x 280	125 x 520
Ständerhöhe	K	mm	520	520	520	520
Gewicht		ca. kg	35	85	35	85

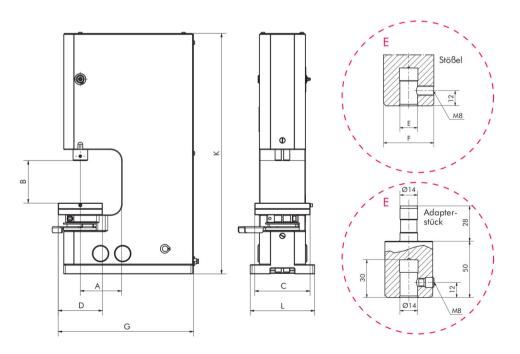

KP Druckluftpressen •



Die Kniehebel-Druckluftpresse der KP 3.1 Serie

- Antrieb durch doppelt wirkenden Pneumatikzylinder
- ▶ Werkseits eingestellte, wiederholgenaue Endlage
- ▶ Verdrehgesicherter Stößel
- Serienmäßig mit Adapterstück zur Überbrückung der Arbeitshöhe
- ▶ Die Hubbegrenzung erlaubt dem Anwender geringe Hublänge für sicheres Arbeiten einzurichten
- ▶ Das MICRO ADJUST System erlaubt schnelle und genaue Höhenverstellung des Pressentischs
- ▶ Ablesegenauigkeit 0,1 mm
- ▶ Ideal zusammen mit dem Werkzeugsystem W 14


KP Druckluftpressen •



Die Kniehebel-Druckluftpresse der KP 3.1 Serie

- Antrieb durch doppelt wirkenden Pneumatikzylinder
- ▶ Werkseits eingestellte, wiederholgenaue Endlage
- ▶ Verdrehgesicherter Stößel
- Serienmäßig mit Adapterstück zur Überbrückung der Arbeitshöhe
- ▶ Die Hubbegrenzung erlaubt dem Anwender geringe Hublänge für sicheres Arbeiten einzurichten
- ▶ Das MICRO ADJUST System erlaubt schnelle und genaue Höhenverstellung des Pressentischs
- ▶ Ablesegenauigkeit 0,1 mm
- ▶ Ideal zusammen mit dem Werkzeugsystem W 14

KP 3.1 N ausgerüstet mit MPS-1 Steuerung

KP 3.1 W

Тур			KP 3.1 N	KP 3.1 W
Druckkraft bei 6 bar		kN	35	35
Arbeitshub		mm	6 - 27	6 - 27
Ausladung	A	mm	112	275
Arbeitshöhe	В	mm	55 - 145	55 - 145
Tischgröße	DxC	mm	120 x 150	120 x 150
Stößelbohrung Ø x Tiefe	E	mm	14H7 x 30	14H7 x 30
Stößel Ø	F	mm	40h7	40h7
Luftanschluss			G 1/4"	G 1/4"
Luftverbrauch/Hub			7,1	7,1
Platzbedarf	CxG	mm	175 x350	175 x 565
Ständerhöhe	K	mm	650	720
Gewicht		ka	75	125

Ventil und Wartungseinheit nur im Lieferumfang mit Steuerung. Die Ausführung kann abweichen.

Werkzeugsystem-Aufbau Stanzwerkzeuge

Berechnung der Scherkräfte

Die benötigte Kraft zum Stanzen berechnet sich aus folgenden Größen:

 τ_{aBmax} = Scherfestigkeit in N/mm² des Werkstoffs

I = Schnittkantenlänge in mm

s = Materialstärke in mm

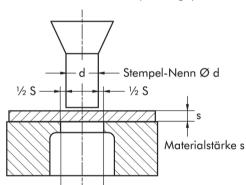
Bei parallel liegenden Schneidkanten von Stempel und Matrize berechnet sich die benötigte Scherkraft wie folgt:

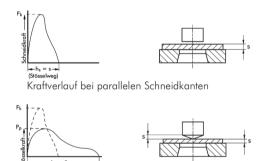
 $F = \tau_{aBmax} \cdot I \cdot s$

Berechnungsbeispiel:

Stanzen eines Lochs Ø: 8,5 mm in 1,5 mm starkes AlMg 5 halbhart

 $(\tau_{aBmax} = 240 \text{ N/mm}^2)$

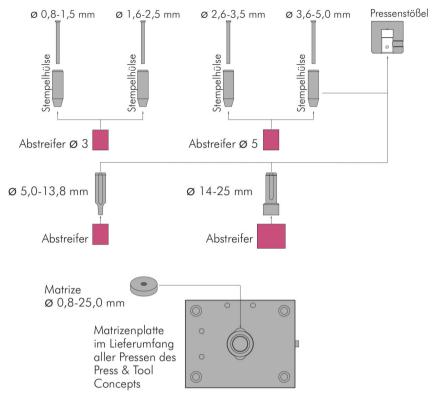

 $F = 8.5 \text{ mm} \cdot \pi \cdot 1.5 \text{ mm} \cdot 240 \text{ N/mm}^2$


 $F = 9608,4 N \sim 9,6 kN$

Durch Schräg- oder Wellenschliff kann die benötigte Schneidkraft reduziert werden.

Schnittspiel:

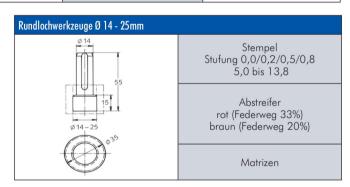
Als Faustregel kann man ansetzen, dass das Schnittspiel 10% von der Materialstärke s betragen sollte. Das Werkzeugsystem wird mit einem Standard Schnittspiel von 0,1 mm ausgeliefert. Insbesondere bei weichen Materialen, Kunststoffen und dünnen Folien muss das Schnittspiel angepasst werden.

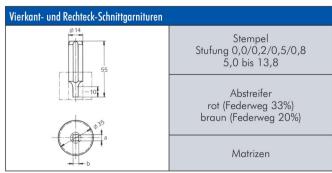

Kraftverlauf bei schräg geschliffenen Schneidkanten

Materialauswahl mit Scherfestigkeit $ au_{aBmax}$ in N/mm 2							
Aluminium	Al 99 weich	60 - 80					
	Al 99 halbhart	60 -100					
Alu-Legierungen	Al Mg 3 weich	150 - 200					
	Al Mg 5 weich	190 - 210					
	Al Mg 5 halbhart	200 - 240					
	Al Mg 7 weich	240 - 280					
	Al Mg 7 halbhart	280 - 320					
Stahl-Feinblech	T St 10	220 - 400					
	U St 12	220 - 340					
	U St 14 2	80 - 320					
Baustahl	St 37	300 - 360					
	St 50	400 - 480					
	St 60	480 - 580					
	St 70	560 - 680					

Vergütungsstahl	Ck 22	340 - 400
	Ck 35	400 - 480
	Ck 45	480 - 580
	Ck 60	560 - 680
Rostfreier Stahl	V2A	600 - 900
Federbandstahl hart		800 -1200
Messing	Ms 58	300 - 450
Kupfer	Си	200 - 230
Polyvinylchlorid weich	PVC 1	20 -180
Polyvinylchlorid hart	PVC	160 - 250
Epoxy (Printmaterial)		180 - 300
Hartpapier		70 - 90

Werkzeugsystem Grundlagen Werkzeugsystem





Rundlochwerkzeuge Ø 0,8 - 5 mm				
Ø 14	Ø 0,8 - 1,9	Ø 2,0 - 2,9	Ø 3,0 - 3,9	Ø 4,0 - 4,9
48 60	Stempel Stufung 0,1 mm	Stempel Stufung 0,1mm	Stempel Stufung 0,1mm	Stempel Stufung 0,1 mm
12 2	Stempelhülse	Stempelhülse	Stempelhülse	Stempelhülse
Ø 0.8 – 5.0	Abstreifer	Abstreifer	Abstreifer	Abstreifer
	Matrize	Matrize	Matrize	Matrize

Rundlochwerkzeuge Ø 5 - 13,8 mm	
Ø 14 Ø 5 – 13,8 Ø 5 – 13,8	Stempel Stufung 0,0/0,2/0,5/0,8 0,5 bis13,8
	Abstreifer rot (Federweg 33%) braun (Federweg 20%)
	Matrizen

Langloch-Schnittgarnituren	
Ø 14 555 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stempel Stufung 0,0/0,2/0,5/0,8 5,0 bis 13,8
	Abstreifer rot (Federweg 33%) braun (Federweg 20%)
	Matrizen

